Random4: An Application Specific Randomized Encryption Algorithm to prevent
SQL injection

Srinivas Avireddy*, Narayan Gowraj*, Ram Srivatsa Kannan*, Prashanth Thinakaran*, Prasanna Ranganathan®*,
Sundaravadanam Ganapathi*, Jashwant Raj Gunasekaran® and Sruthi Prabhuf
*Department Of Information Technology

Madpras Institute of Technology, Anna University,

Tamil Nadu, Chennai - 600044
TDepartment Of Computer Science and Engineering

Madras Institute of Technology, Anna University,

Tamil Nadu, Chennai - 600044

Abstract—Web Applications form an integral part of our
day to day life. The number of attacks on websites and the
compromise of many individuals secure data are increasing
at an alarming rate. With the advent of social networking
and e-commerce, web security attacks such as phishing and
spamming have become quite common. The consequences of
these attacks are ruthless. Hence, providing increased amount
of security for the users and their data becomes essential. Most
important vulnerability as described in top 10 web security
issues by Open Web Application Security Project is SQL
Injection Attack(SQLIA) [3]. This paper focuses on how the
advantages of randomization can be employed to prevent SQL
injection attacks in web based applications. SQL injection can
be used for unauthorized access to a database to penetrate
the application illegally, modify the database or even remove
it. For a hacker to modify a database, details such as field
and table names are required. So we try to propose a solution
to the above problem by preventing it using an encryption
algorithm based on randomization. It has better performance
and provides increased security in comparison to the existing
solutions. Also the time to crack the database takes more time
when techniques such as dictionary and brute force attack are
deployed. Our main aim is to provide increased security by
developing a tool which prevents illegal access to the database.

Keywords-randomization; SQL injection; Vulnerability; web
security.

I. INTRODUCTION

According to the report by the White Hat on web security
vulnerabilities 2011, it shows that nearly 14-15 % of web
application attacks account for SQL Injection [8]. With the
increasing attacks on web applications, it is very important
to have awareness about the existing attacks, because vulner-
abilities such as phishing, social engineering attack, denial
of service attacks have become very common. The most
basic Social Engineering attacks are Phishing and Email
spamming.

Another emerging phishing attack is Tab Nabbing, which
can deceive even tech savvy online users [9]. A survey on
web security was conducted by us and a total of about 100
students participated. It is really surprising to note that nearly

80 % were unable to identify phishing attack and around 70
% could not identify Email spam. Hence there is a need
that everyone has basic awareness about web security, since
most of the confidential transactions are carried out on the
web.

In this paper we take up SQL Injection, a critical web
security vulnerability. SQLIA is a type of code-injection
attack [12]. It is caused mainly due to improper validation
of user input. Solutions addressed to prevent SQL Injection
Attack include existing defensive coding practices alongside
encryption algorithms based on randomization. Defensive
coding mechanisms are sometimes prone to errors,hence not
complete in eradicating the effect of vulnerability. Defensive
programming is sometimes very labour intensive, thus not
very effective in preventing SQLIA. SQL Injection Attack
is an application level security vulnerability.

The main intent to use SQL injection attack include
illegal access to a database, extracting information from the
database, modifying the existing database, escalation of priv-
ileges of the user or to malfunction an application.Ultimately
SQLIA involves unauthorized access to a database exploiting
the vulnerable parameters of a web application.

A novel idea to detect and prevent SQLIA,an application
specific encryption algorithm based on randomization is
proposed and its effectiveness is measured. There are many
methods to illegally access a database using SQLIA and
most of the solutions proposed to detect and prevent it are
able to solve only problems related to a subset of the attack
methods.

The related work which works on similar concept named
SQLrand [11] uses randomization to encrypt SQL key-
words. But this needs an additional proxy and computational
overhead and the need to remember those keywords. The
overhead associated with this concept is removed in our
proposed algorithm. It belongs to application specific class
of coding methodology.

The major contributions by us in this paper include,
the proposal of Random4 encryption algorithm to prevent

SQLIA. A tool to generate cipher text written in C# pro-
gramming language is presented. An empirical analysis
based on brute force attack to show its effectiveness is
emphasized. The proposed technique is applied in several
applications to prove its correctness.

Section II gives an overview on SQL Injection and the
attack types associated with it. Section III provides our
proposed solution to detect and prevent SQLIA effectively.
Section IV describes the prevention strategy while section
V providing the results and analysis of applying the ran-
domised algorithm .Section VI provides the concluding part
of the paper.

II. SQL INJECTION

In order to locate the hotspots where SQLIA vulnerability
occurs, we first discuss about the 3-tier logical view archi-
tecture of web applications [1].

A. 3-tier Architecture of web application

1) User interface tier: This layer forms the front end of
the web application. It interacts with the other layers based
on the inputs provided by the user.

2) Business logic tier: The user request and its processing
are done here. It involves the server side programming logic.
Forms the intermediate layer between the user interface tier
and the database tier.

3) Database tier: It involves the database server. It is
useful in storage and retrieval of data.

User Interface Layer

Database Layer

Database

Figure 1. Web 3-tier architecture

B. Basic principle in SQL injection

SQL injection attack is a web security attack by
using SQL statements exploiting the poorly designed
input elements of a web form. This compromises the
confidentiality and integrity of users’ sensitive data. SQLIA
takes place between the user interface layer and the business

Login Page

s I corcel |

Password :

Figure 2. Sample Login form

logic layer [1]. To understand the essence of SQL injection
let us see the following example [2].

SELECT * from tablename WHERE user=‘ ’ and
password= ¢ ’;

A sample SQL statement containing two input parameters
is considered .Instead of typing the actual username and
password, if a hacker attempts illegally to access the
database by inputting SQL statements, it is said to be a
SQLi attempt. For example if the hacker inputs, ° OR
‘1’=°1" - -, the statement becomes,

SELECT * from tablename WHERE user=‘" OR
‘1’=1’- - and password= ¢’ ;

Here the user gets unauthorized access to the system
because 1=1 is true always and - - indicates the statements
following it are comments. Therefore, if the inputs by the
user were not properly sanitized, it might lead to a criti-
cal web security attack. This describes the basic principle
involved in SQL injection.

C. Attack Types

This section briefly describes about the types of SQLi
attacks [10] for which we propose solutions in the next
section.

1) Using tautology: The example quoted in the section
IL.LB to explain SQL injection describes the attack using
tautology.

2) Using illegal/incorrect queries: By providing
incorrect inputs, the database might return some important
information regarding the table and fields used in the
database. Using successive requests like these, the security
can be compromised. In the following example instead of a
valid username (xyz), an incorrect input (xyz’) is provided
and an error message is returned giving clues about the

database making it vulnerable to intrusion.

Error: SELECT username, student

WHERE username = xyz’

password from

Here field names such as username and password from
table student are exposed.

3) Using Piggy-Backed Queries: Previously mentioned
attack types try to gain unauthorized access to the
application or fetch details about the database without any
additional queries added to the input query. If additional
queries are piggy-backed in the input area using special
characters such as “”, “ —" or “; ” [5] hackers can modify

or delete the database. An example to this is:

SELECT * from User WHERE id=123;drop table
User;

Here “;” acts as a delimiter and additional an drop
statement may be executed and deletes the table.

4) Blind injection: In case of incorrect queries, program-
mers try to hide database information as a measure to
protect the application from attacks using illegal/incorrect
queries. Now, the hacker does not get any clues about the
database. The option hence used to compromise security is,
by querying the database with a lot of true/false queries and
checking its result. Based on the response of the application
to the queries, the hackers attempt illegal access. This type
of attack is most prominently used. It includes timing attacks
[10] as one of the technique to identify the behavior of the
application.

III. PROPOSED SOLUTION

Section III.A describes the basic solution resembling the
existing solution which is a client side validation and the
Section III.B describes the proposed randomized algorithm.
Section III. C deals with the tool generating the random keys
for a given input.

A. Client Side Variation

Using client side script validation such as JavaScript,
a lot of SQL injection attacks can be prevented in Web
application. Though this approach does not solve all the
attack types, it is necessary to provide the basic security to
prevent illegal attacks. The sequence of steps that increase
the level of security in case of vulnerabilities is depicted in
the activity diagram [Fig 3].

The advantage of client side validation is that it reduces
CPU cycles since it avoids a number of round trips to the
server. Some of the steps involved in client side validation
include limiting the input size, restricting the use of special
characters etc. But limiting the size of the input and restrict-
ing the use of special characters cannot be imposed on users
in all applications. Also the protection provided by client

Enter Input

A\ 4

Limit the size of
input

(Type Checking the)

Input

. J

A\ 4
(. .)
Removing Special

. Characters |

Figure 3. Activity diagram for client side validation

side scripts can be easily bypassed. The use of this approach
can solve attacks using tautology or incorrect queries. It
cannot solve the threat posed by blind injection techniques.
Hence we prefer server side validation techniques.

B. Random4 Algorithm

The random4 algorithm is based on randomization and is
used to convert the input into a cipher text incorporating
the concept of cryptographic salt. This algorithm forms
the basis of the proposed approach. Any input in web
forms will contain numbers, uppercase, lowercase or special
characters. Keeping this in mind the input from user is
encrypted based on randomization. In our algorithm the valid
inputs are numbers, lowercase or uppercase characters and
at most 10 special characters. The reason for choosing only
10 special characters is that they are rarely used and for
additional security. Each character in the input can have
72 combinations (26 lowercase, 26 uppercase, 0-9 and 10
special characters). Hence for a 6 character input there can
be 725 combinations possible. To encrypt the input, each
input character is given four random values.

A sample lookup table is given in figure 4. Based on the
next input character, one of these four values is substituted
for a given character. For example, let username be the input
to be provided. If the username is “abc”, the first character
‘a’ is given 4 random values in the lookup table. Based on
the next input character which is lowercase ‘b’ here, the
value R[1] is chosen. If the next character was uppercase

=1
o] e U
A |) o
——
] f .
o | g
——
o [S |
B (- 5 o
—
[T

Figure 4. Lookup table for Random4 algorithm

R[2] would have been chosen and R[3] if it was a number
and R[4] if it was a special character or no character. These
random values for each character are application specific.
The idea behind making these random values different for
different application is that, it decreases the probability of
decrypting it by hackers. The algorithm to encrypt the input
is presented as follows [Fig 5]. The algorithm below shows
that one of the four random values are chosen for each
character based on the lookup table as in [Fig 4].

C. Framework for RANDOM4

A framework to build the tool generating the encrypted
text based on Random4 is shown in [Fig 6]. A normal text
is given as input . Each input character is mapped to one
of its four values as in the lookup table. The key values of
each character are concatenated to form the cipher text.

A C# application using Microsoft Visual Studio 2007
was developed which is the tool to generate the encrypted
keys for the given input values. This can then be stored
in database and used by programmers in server side pro-
gramming to prevent illegal access through SQL injection.
A sample screen shot of the output generated by this tool is
shown in [Fig 7].

IV. PREVENTION STRATEGY
A. For piggy-backed query

For a piggy-backed query to be successful, we need the
information about the table such as table name and the
corresponding field names. By concatenating the original
table and field names along with its encrypted string makes it
difficult to crack the table and field names, hence preventing
SQL injection attack through piggy-backed queries.

For example the table “user” becomes “userA2;h”. The
time to crack such cipher texts are in years. Hence for the
hacker to successfully attempt an attack by piggy backing
he needs the table and field names. Since it is encrypted

Input: input string ip[]

Output: Encrypted string en[]
N: Length of ip[]

R[]:Random values of character

Fori=1to N
if (ip[i+1]=null | | ip[i+1]=lowercase)
then en[i]=R[1]
End {if }

else if(ip[i+1]=uppercase)
then en[i]=R[2]
End {else if }

else if(ip[i+1]=number)
then en[i]=R[3]
End {else if }

else if(ip[i+1]=spl.char)
then en[i]= R[4]
End {else if }
End { For }
return en[]

Figure 5. Random4 algorithm for encryption

using Random4 algorithm and the encryption logic is also
application specific, it is highly difficult and time consuming
for decryption and deploy an attack. Thus attack by piggy
backing is prevented.

B. For Blind SQL injection

In case of piggy-backed query attacks we encrypted only
the table and field names. In case of blind injection attacks,
we encrypt the user input and validate it for authorized
access. Hence even if attacks are attempted, they will be
prevented because only the encrypted values are checked
with the database and not the actual input. The following
example explains this strategy of how blind injection works
in a web application which is poorly designed.

SELECT * FROM user WHERE id=*’ and password=*";

For the above the SQL statement if the id=567 and
password=xyz, the SQL statement will be checked with
an encrypted value such as id=g4” and password=j8G.This
is based on the random values used for the particular
application. Instead of valid data if illegal attempts to
access database is tried, it becomes unsuccessful. For
example, if an illegal SQL statement is given as input such

Client Ul HTTP Malicious
Request I/P
T Database
‘ Encryption =) Web Application %
Random4 <{== Server Layer &=
HTTP Non -
Response Malicious I/P
Figure 8. Overall view of the proposed system
INPUT
S Input username
IP[1] | IP[2] | IP[3] IP[N]
Key *g0bGXg3
y y
RANDOM4 ENCRYPTION LOOKUP
Generate
y y
CT[1][CT[2]| CT[3] CT[N]
Figure 7. Sample output for encrypted key

\/
CIPHER TEXT
OUTPUT
Figure 6. Framework for Random4 algorithm
as id=";drop table users;- -”,the SQL statement becomes,
SELECT * FROM user WHERE

id=‘2dg9J109&aBd3nK0SV4;’ and password=*";

Hence the above statement when checked with the
database will not match any entry, thus returning false. An
attempt to attack the database was prevented successfully
using the idea of encryption based on randomization. The
overall strategy of the proposed solution providing the
sequence of stages involved in web application transactions
is shown in [Fig 8].

V. RESULTS AND ANALYSIS

Section V.A deals with the experimental setup and its
analysis. Section V.B compares the proposed encryption
algorithm with the other tools. Section V.C provides a test
case to prove Random4 algorithm and its performance.

A. Experimental Setup

A set of five PHP web applications with MySQL as
the backend database were chosen for the experiment. This
empirical study was to prove the effectiveness of Random4
algorithm. Table II gives information such as the web
application considered, its size measured in Lines Of Code
and the number of vulnerable parameters. Lines of code was
measured using a open source software CLOC [17]. The web
applications chosen were online college magazine, online
library management system, social networking application,
online payment system and online ticket booking system.
The following were the results obtained on various web
applications considered.

Lines Of Code | Vulnerable
parameters
40

3403

2798 35
5608 47
4214 23

3309 34

Figure 9. Scenario for experimental setup

M total attacks
M successful attacks

™ prevented by Random4

Figure 10. Graph comparing various web applications

The experiment results show the number of attacks made,
the number of attempts that were successful and the number
of attacks that were prevented using the Random4 algorithm.
A graph was plotted and is shown in [Fig 10].

B. Comparison with Other tools

No

Automated Automated

WAVES

No Automated Reports
W yes Semi-Automated Automated
m yes Automated Automated
m yes N/A Automated
yes Automated Automated

Figure 11. Comparison of other prevention tools
Random4 algorithm is compared with other tools used
in detection and prevention of SQLIA such as AMNESIA
[12], WAVES [13], SQL check [14], SQL rand [11] and
SQL DOM [15]. The comparison was made on whether any
encoding was part of the technique and the automation in

detecting and preventing SQLIA. The results are tabulated
in [Fig 11].

C. Test case for Random4

A PHP based web application was built with MySQL as
the backend database. To test the idea proposed, we used
a web application and the results before and after applying
the encryption algorithm are shown in [Fig 12] and [Fig
13] respectively. Before applying the encryption algorithm
the attack using tautology technique which was discussed in
section II.B was successful. An illegal access was allowed.
A sample screenshot shows the effect in [Fig 12].

Login Page

Member authentication

s

~

Member Login

Username : | ‘OR’1'="1 |

Password : | 3¢k ok ok ok sk ok sk ok ok ok ok |

& The page at localhost sayiL

Login Successful

[ok 1| cancel

Figure 12. Before applying encryption algorithm

After applying the encryption algorithm it was found
that the previously successful attack using tautology became
unsuccessful. A sample screenshot to show this effect is in
[Fig 13].

The performance comparison of cipher text over normal
text shows that, cipher text is very difficult and time consum-
ing to crack. Because the time to crack cipher text generated
by Random4 using Brute force technique is in the order of
years in comparison to normal text which is normally in
the order of days for smaller input size [4]. Time to crack
normal and cipher text by a computer whose CPU is capable
of cracking 500,000 passwords or key is tabulated in [Fig
14] and the graph is plotted for cipher text in [Fig 15].

We can infer from [Fig 15] that how powerful a cipher text
is when compared to ordinary text without any encryption
algorithm used. The reason why we chose is the difficulty
in cracking the logic which makes use of randomization.

VI. CONCLUSION

SQL injection is one most important web security threat
that needs attention so as to improve security for the users
and their data. This paper deals with an application specific

Login Page

Member authentication

4 N

Member Login

‘OR’1'="1 |

Username : |
Password |

sk ok ok ok ok ok ok ok ok Kok |

& The page at localhost says:

**Invalid username and password™

E OK % [Cancel

Figure 13. After applying encryption algorithm

No of i/p Normal Text Cipher Text
characters

5 30 mins 21 days
6 1 day 14 years
7 13 years 3659 years

Figure 14. Comparison of normal text and cypher text

Time to crack cipher text

4000

3500 /
., 3000 ////
§ 2500 /
< 2000 /
g 1500 /

1000

/

500
0 J

input size ‘

Figure 15. Time to crack cypher text using Brute Force method

randomized encryption algorithm to detect and prevent it.
Futher its effectiveness was compared with other existing
techniques and its performance was quantified. Hence we
took up this web security vulnerability and analyzed its
attack types. Security threat posed SQLIA is really high
and it is very necessary to protect users’ data in a web
application, since it is very confidential and sensitive.

REFERENCES

[1] Jeom-Goo Kim Injection Attack Detection using the Removal
of SOL Query Attribute Values

[2] R.Ezumalai, G.Aghila Combinatorial Approach for preventing
SQL Injection Attacks.

[3] The open Web Application Security Project, OWASP TOP 10
project, http://www.owasp.org/

[4

—

http://lastbit.com/rm_bruteforce.asp

[S] NTAGWABIRA Lambert, KANG Song Lin Use of Query
Tokenisation to detect and prevent SQL injection Attacks

[6] Meilunjin An Approach for SQL injection vulnerability detec-
tion

[7] Diallo Abdoulaye Kindy, Al-sakib Khan pathan A Survey
On SQL Injection: Vulnerabilities, Attacks and Prevention
techniques

[8] https://www.whitehatsec.com/resource/stats.html

[9] Seckin Anil Unlu, Kemal Bicakci NoTabNab: Protection
against The Tabnabbing Attack

[10] Tajpour, A., Massrum, M., Heydari, M.Z. Comparison of SQL
injection detection and prevention Techniques

[11] Stephen W.Boyd , Angelos D.Keromytis SQLrand: Prevent-
ing SQL injection Attacks

[12] W. G. Halfond and A. Orso. AMNESIA: Analysis and Moni-
toring for NEutralizing SQL-Injection Attacks. In Proceedings
of the IEEE and ACM International Conference on Automated
Software Engineering (ASE 2005), Long Beach, CA, USA, Nov
2005.

[13] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Monitor-
ing. In Proceedings of the 11th International World Wide Web
Conference (WWW 03), May 2003.

[14] Z. Su and G. Wassermann. The Essence of Command In-
Jection Attacks in Web Applications. In The 33rd Annual
Symposium on Principles of Programming Languages (POPL
2006), Jan. 2006.

[15] R. McClure and I. Kruger. SOQL DOM: Compile Time Check-
ing of Dynamic SQL Statements. In Proceedings of the 27th
International Conference on Software Engineering (ICSE 05),
pages 8896, 2005.

[16] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso,
A Classification of SQL Injection Attacks and Countermeasures

[17] http://cloc.sourceforge.net/

