
Proctor – Detecting and Investigating
Performance Interference in Shared Datacenters

Ram Kannan, Animesh Jain, Michael Laurenzano, Lingjia Tang, Jason Mars

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters

 2

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters
✦ Datacenters

✓ Huge power/performance
requirements*

 2

*Barroso et al, The Datacenter as a Computer

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters
✦ Datacenters

✓ Huge power/performance
requirements*

✓ Expensive (over $1 billion)

 2

*Barroso et al, The Datacenter as a Computer

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters
✦ Datacenters

✓ Huge power/performance
requirements*

✓ Expensive (over $1 billion)

 2

✦ Application Colocation

*Barroso et al, The Datacenter as a Computer

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters
✦ Datacenters

✓ Huge power/performance
requirements*

✓ Expensive (over $1 billion)

 2

✦ Application Colocation
✓ Improves resource utilization

*Barroso et al, The Datacenter as a Computer

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Datacenters
✦ Datacenters

✓ Huge power/performance
requirements*

✓ Expensive (over $1 billion)

 2

✦ Application Colocation
✓ Improves resource utilization

✓ Reduces cost

*Barroso et al, The Datacenter as a Computer

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Virtualization

 3

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters �4

D-RAM

CPU

Application Execution

Core
 1

Core
 2

Core
 3

Core
 4

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters �4

D-RAM

CPU

Application Execution

Core
 1

Core
 2

Core
 3

Core
 4

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters �4

D-RAM

CPU

Application Execution

Core
 1

Core
 2

Core
 3

Core
 4

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters �4

D-RAM

CPU

Application Execution

Core
 1

Core
 2

Core
 3

Core
 4

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters �4

D-RAM

CPU

Application Execution

Core
 1

Core
 2

Core
 3

Core
 4

Shared Hardware
Resources

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sources of Contention

 5

Shared Hardware
Resources

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sources of Contention

 5

Disk

Shared Hardware
Resources

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sources of Contention

 5

Disk

Shared Hardware
Resources

CPU + LLC

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sources of Contention

 5

Disk Network

Shared Hardware
Resources

CPU + LLC

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

•

�6

 Effects of contention — Poor Performance!!

•

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

•

�6

 Effects of contention — Poor Performance!!

•

Application

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

•

�6

 Effects of contention — Poor Performance!!

•

Application Resources

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

•

�6

 Effects of contention — Poor Performance!!

•

Application Resources

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

How do we handle contention?

 7

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

How do we handle contention?

 7

Detection

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

How do we handle contention?

 7

Detection Investigation

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

How do we handle contention?

 7

Detection Investigation Mitigation

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

How do we handle contention?

 7

Detection Investigation Mitigation

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

• Multiple sources of contention

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

• Multiple sources of contention

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

• Multiple sources of contention

• High overheads

 8

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Challenges
• Absence of a priori information

• Multiple sources of contention

• High overheads

 8

Bubble Up
[Mars Micro’ 11]

Bubble Flux
[Yang Micro’ 13]

CPI2
[Zhang Eurosys’ 13]

Parda
[Gulati FAST’ 09]

Deep Dive
[Novakovic ATC’ 13]

ASM
[Mars Micro’ 15]

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Outline

• Motivation

• Proctor – Overview and Design

• Evaluation

• Conclusion

 9

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor Overview

 10

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor Overview

 10

Detection (PDD)

t1

Q
oS

t2t0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor Overview

 10

Detection (PDD) Investigation (PDI)

VM

VM

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Step	1:	
Performance	Degradation

Detection	(PDD)

Step	2:	
Performance	Degradation

Identification	(PDI)

t1

Q
oS

Input

ChangeS
Investigator

performance
issue at t1

t0

0.01 0.02 0.01 0.03 0.01 0.02 0.57 3.32 10.7 4.73 0.01

performance issue

(b) Moving Window

t2

(a) CSI Flow

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.528.52 8.51 8.55 8.52 8.51

t1

Q
oS

Input

ChangeS
Investigator

performance
issue at t1

t0

0.01 0.02 0.01 0.03 0.01 0.02 0.57 3.32 10.7 4.73 0.01

performance issue

(b) Moving Window

t2

(a) CSI Flow

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.528.52 8.51 8.55 8.52 8.51

VM

step	
detection

Sub-sampling

VM

VM
VM

VM

VM

VM

VM

Intrusive	
VM

t1

Q
oS

t2t0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection

 11

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection

✦ Step Detection — Sliding window based approach

 11

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection

✦ Step Detection — Sliding window based approach

 11

t1

Q
oS

Input

ChangeS
Investigator

performance
issue at t1

t0

0.01 0.02 0.01 0.03 0.01 0.02 0.57 3.32 10.7 4.73 0.01

performance issue

(b) Moving Window

t2

(a) CSI Flow

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.528.52 8.51 8.55 8.52 8.51

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection

✦ Step Detection — Sliding window based approach

 11

t1

Q
oS

Input

ChangeS
Investigator

performance
issue at t1

t0

0.01 0.02 0.01 0.03 0.01 0.02 0.57 3.32 10.7 4.73 0.01

performance issue

(b) Moving Window

t2

(a) CSI Flow

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.528.52 8.51 8.55 8.52 8.51

VM

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection

✦ Step Detection — Sliding window based approach

 11

t1

Q
oS

Input

ChangeS
Investigator

performance
issue at t1

t0

0.01 0.02 0.01 0.03 0.01 0.02 0.57 3.32 10.7 4.73 0.01

performance issue

(b) Moving Window

t2

(a) CSI Flow

1.71 1.72 1.71 1.73 1.71 1.72 1.71 1.73 8.528.52 8.51 8.55 8.52 8.51

VM

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection — Challenges

 12

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection — Challenges

✦ Noise — Telemetry from system software tools is noisy.

 12

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection — Challenges

 13

✦ Noise — Telemetry from system software tools is noisy.

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection — Challenges

 13

✦ Noise — Telemetry from system software tools is noisy.

✦ Overshadows the abrupt change

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Step Detection — Challenges

 13

✦ Noise — Telemetry from system software tools is noisy.

✦ Overshadows the abrupt change

Abrupt
change

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Current Approach — Moving Average

 14

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Current Approach — Moving Average

 14

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters 15

Gradual
change

Current Approach — Moving Average

Abrupt
change

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters 15

Gradual
change

Current Approach — Moving Average

Abrupt
change

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters 16

Current Approach — Moving Average

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters 16

0 100 200 300 400 500 600
Execution Time

25
50

100
150
200
250
300
250
400

I/O
 L

at
en

cy

I/O latency TPC-C

0
2
4
6
8
10
12
14
16
18

PDD

Current Approach — Moving Average

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor — Median Filter

 17

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor — Median Filter

 17

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Proctor — Median Filter

 18

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Correlation

cache misses
↓

cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Telemetry
cache misses, disk accesses etc.

Correlation

cache misses
↓

cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Telemetry
cache misses, disk accesses etc.

Correlation

Storage
Overhead

cache misses
↓

cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Telemetry
cache misses, disk accesses etc.

Correlation
Performance

Overhead

Storage
Overhead

cache misses
↓

cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Telemetry
cache misses, disk accesses etc.

Correlation
Performance

Overhead

Storage
Overhead

Primary QoS
I/O latency, IPC, QPS

cache misses
↓

cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Performance Degradation Investigation (PDI)

 19

Telemetry
cache misses, disk accesses etc.

Correlation
Performance

Overhead

Storage
Overhead

Primary QoS
I/O latency, IPC, QPS

Metrics
cache misses

↓
cache contention

disk accesses
↓

I/O contention

context switches
↓

cpu core contention

network throughput
↓

network contention

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

✦ Real Time Sub-sampling

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

✦ Real Time Sub-sampling
✓ Retains statistical characteristics of original data

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

✦ Real Time Sub-sampling
✓ Retains statistical characteristics of original data
✓ Generate random sample

random
sample

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Sub-Sampling

 20

✦ Real Time Sub-sampling
✓ Retains statistical characteristics of original data
✓ Generate random sample
✓ Passes hypothesis test (Pearson’s Chi-square X2 testing)

random
sample

X2

TEST
pass

01

1

0

00
0

1

1

1

0

1

1
0

0

0

1

0
1

0

01

0

1
010

1

0

0

1

0

1

1
1

0

1

1

10

1

00

0
0
0

0

1

0
1

0

1

0

1

0
0

1

0

1
0 1

1

1

0

1

1
10

1
0

0

0

0

0 1 01

0

1

0

1

1
0

1

0
1

1

1

0

1

1

10

1
0

0

0

0
0

01

0

00

1

1

0

1
1

1
1

0

1
0

0

0

0

0

0

1

1
1
0
0
1

11 1

1
0
10
1

1
010

1
0

1

0

1
100

1010

01
0
1

1 10
0

1
0

0
0

0 0100

1010
0

0
1
11
10
0
0

1

0

1

1
0

01

1
0
0

0

1

0

0

1

0 1
0
1

0

0

0

1
1

1

1
1

1

1

0

00
0

1

00
00 1

1

1

0

1
10

1

0

0

0

1
0

0

0
0

0

0

1

0

01

1
0
0

0

1

0

0

1
1

1

1

10

0

0 11

10

1

0
0

0

0

0

1

1

1

0

0

0

0
1

1
1

0

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Outline

• Motivation

• Proctor – Overview and Design

• Evaluation

• Conclusion

 21

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Experimental Setup
✦ Infrastructure

• Intel Xeon E5-2630 @2.4 GHz, E3-1420 @3.7 GHz
✦ Tools

• Linux kvm perf, iostat, netstats, kvm top
✦ Benchmarks

• SPEC CPU2006, Big Data bench, OLTP bench, Redis, netperf, I/O blazer

 22

Processor Microarchitecture Kernel Hypervisor
Intel Xeon E5-2630
@2.4 GHz Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0

Intel Xeon E3-1420
@3.7 GHz Haswell 3.8.0 KVM-QEMU v2.0

TABLE II: Experimental platform where Proctor is evaluated

Application Description Benchmark
Suite QoS Metric

CPU /
LLC

lbm Fluid Dynamics
SPEC

CPU2006 IPClibquantum Quantum Computing

omnetpp Discrete Event
Simulation

sphinx3 speech recognition

CPU /
LLC

Naive Bayes Big data classification

Big Data
Bench IPC

Sort Sort words from text
Grep Search words from text
Word Count Count words from text

Kmeans Processing facebook
network

I/O

YCSB Querying from Yahoo
dataset OLTP

bench

I/O latency
and throughput

TPC-C Querying from retail
database I/O latency

TPC-H Querying from business
database I/O latency

Twitter Querying from tweets I/O latency
and throughput

Network Redis Key value store Redis Tail Latency

netperf Network packet
generator netperf network

throughput

TABLE III: Benchmarks which have been used to evaluate
Proctor and its descriptions

on the probability distributions of the variables being assessed.
Therefore, we utilize Pearson’s Chi-Squared test for testing
whether a sample is representative of a population [47].

Chi-square c2 test is a statistical test used to examine
differences within categorical variables [47]. For time series
data, we have taxonomized categories as numerical ranges
within which measurements from system software tools and
performance counters can fall into. In other words, we segre-
gate the population data into different categories where each
category refers to a specific range of numerical quantities.
Subsequently, we classify the sample data also into the same
categories as the population. We now obtain the frequency of
elements present in each category for both the sample and
population data. For the sample data to be acceptable, the
frequency of elements of the sample data in each category
should be close to the frequency of elements of the population
data in the same category. Chi squared test, compares the
frequency of elements of sample and population data in every
category to determine the sample’s acceptability

Input. Frequencies of population measurements and sample
measurements lying in each range.

Output. Accept/Reject sample to be representative of a
population.

Methodology. We undertake the following steps to perform
Chi-square c2 test.

Work
Load ID

App 1 -
Main app

App 2 -
Colo app

App 3 -
Colo app

App 4 -
Colo app

App 5 -
problematic app

Network WL1 Redis Search lbm Sort netperf

Disk
I/O

WL2 Twitter lbm Redis Sort YCSB
WL3 TPC - C libquantum Redis Grep Random I/O
WL4 YCSB sphinx3 Redis Word Count TPC - H
WL5 TPC - H lbm Redis K-Means YCSB

CPU
WL6 Naive Bayes libquantum Redis lbm Page Rank
WL7 Grep TPC-C Redis sphinx3 Sort
WL8 lbm TPC-H Redis Sort libquantum

LLC
WL9 omnetpp TPC-H Redis Word Count lbm
WL10 libquantum Random I/O Redis Grep povray
WL11 Redis povray Redis povray libquantum

TABLE IV: Workload scenarios that have been created from
the benchmarks to evaluate Proctor

1) We identify the frequency of entities that belong to every
range for the sample distribution.

2) To compare the frequency per range of the sample
and population distribution, we adopt the following
methodology.
Null Hypothesis H0: Sample and Population distribu-
tions are similar
Hypothesis Test:

c2 = (Population�Sample)2

Sample

3) We assess the significance level based on the size of the
sample to accept/reject the null hypothesis. Hence, if the
null hypothesis is rejected we repeat the same test with
a different sample.

V. EVALUATION

A. Methodology

Infrastructure. We evaluate Proctor on two commodity
multicore processors summarized in Table II. We use system
software tools iostat and netstat to obtain network and
disk specific performance metrics and linux perf tool to
measure HW counters. Performance telemetry is collected at
a second level granularity using HW counters.
Applications. Table III enumerates the applications, their
description, input, application domain and the respective suite
from which they is obtained. We evaluate Proctor on work-
loads, where each workload is a mix of 5 applications. We
design these workloads in a careful manner to study different
types of resource contention. 4 out of 5 applications in a
workload are chosen in a manner that they put stress on the
four shared resources - I/O, network, CPU core and LLC.
Once these four applications are executing, arrival of fifth
application now causes contention for the resource it uses
heavily. Table IV illustrates the workload mixes that we have
considered in our evaluation. Workloads are executed for a
period of one hour where each application is introduced after
a period of 12 mins.

B. Proctor Accuracy
We first evaluate end to end accuracy of Proctor in detecting

and investigating the source of contention. In this experiment,
we execute all the workloads and check whether Proctor is

6

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

PDD Accuracy

 23

PDD achieves high accuracy

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

PDD Accuracy

 23

PDD achieves high accuracy

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

PDI Effectiveness

 24

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

PDI Effectiveness

 24

Correlating
VM

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

PDI Effectiveness

 24

Correlating
VM

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Scalability

 25

Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Conclusion

 26

