Proctor – Detecting and Investigating Performance Interference in Shared Datacenters

Ram Kannan, Animesh Jain, Michael Laurenzano, Lingjia Tang, Jason Mars

Datacenters

 ✓ Huge power/performance requirements*

*Barroso et al, The Datacenter as a Computer

Datacenters

- ✓ Huge power/performance requirements*
- ✓ Expensive (over \$1 billion)

*Barroso et al, The Datacenter as a Computer

Datacenters

- Huge power/performance requirements*
- ✓ Expensive (over \$1 billion)

*Barroso et al, The Datacenter as a Computer

Application Colocation

Datacenters

- Huge power/performance requirements*
- ✓ Expensive (over \$1 billion)

*Barroso et al, The Datacenter as a Computer

- Application Colocation
 - ✓ Improves resource utilization

Datacenters

- Huge power/performance requirements*
- ✓ Expensive (over \$1 billion)

*Barroso et al, The Datacenter as a Computer

- Application Colocation
 - ✓ Improves resource utilization
 - ✓ Reduces cost

Virtualization

Detection

Detection Investigation

Detection Investigation Mitigation

Detection Investigation Mitigation

• Absence of a priori information

• Absence of a priori information

• Absence of a priori information

• Multiple sources of contention

• Absence of a priori information

• Multiple sources of contention

Absence of a priori information lacksquare

Multiple sources of contention lacksquare

High overheads \bullet

• Absence of a priori information

Multiple sources of contention

• High overheads

Bubble Up

[Mars Micro' 11]

ASM

[Mars Micro' 15]

Bubble Flux

[Yang Micro' 13]

ClarityLa

Deep Dive

[Novakovic ATC' 13]

CPI²

[Zhang Eurosys' 13]

Outline

- Motivation
- Proctor Overview and Design
- Evaluation
- Conclusion

Proctor Overview

Proctor Overview

Detection (PDD)

Proctor Overview

Detection (PDD)

Investigation (PDI)

Noise — Telemetry from system software tools is noisy.

Noise — Telemetry from system software tools is noisy.

Noise — Telemetry from system software tools is noisy.

Overshadows the abrupt change

Noise — Telemetry from system software tools is noisy.

Overshadows the abrupt change

Proctor — Median Filter

Proctor — Median Filter

Proctor — Median Filter

✦ Real Time Sub-sampling

- ✦ Real Time Sub-sampling
 - ✓ Retains statistical characteristics of original data

- ✦ Real Time Sub-sampling
 - ✓ Retains statistical characteristics of original data
 - ✓ Generate random sample

- ✦ Real Time Sub-sampling
 - ✓ Retains statistical characteristics of original data
 - ✓ Generate random sample
 - ✓ Passes hypothesis test (Pearson's Chi-square X² testing)

Outline

- Motivation
- Proctor Overview and Design
- Evaluation
- Conclusion

Experimental Setup

- ✦ Infrastructure
 - Intel Xeon E5-2630 @2.4 GHz, E3-1420 @3.7 GHz
- ✦ Tools
 - Linux kvm perf, iostat, netstats, kvm top
- ✦ Benchmarks
 - SPEC CPU2006, Big Data bench, OLTP bench, Redis, netperf, I/O blazer

	Work	App 1 -	App 2 -	App 3 -	App 4 -	App 5 -
	Load ID	Main app	Colo app	Colo app	Colo app	problematic app
Network	WL1	Redis	Search	lbm	Sort	netperf
	WL2	Twitter	lbm	Redis	Sort	YCSB
Disk	WL3	TPC - C	libquantum	Redis	Grep	Random I/O
I/O	WL4	YCSB	sphinx3	Redis	Word Count	TPC - H
	WL5	TPC - H	lbm	Redis	K-Means	YCSB
	WL6	Naive Bayes	libquantum	Redis	lbm	Page Rank
CPU	WL7	Grep	TPC-C	Redis	sphinx3	Sort
	WL8	lbm	TPC-H	Redis	Sort	libquantum
	WL9	omnetpp	TPC-H	Redis	Word Count	lbm
LLC	WL10	libquantum	Random I/O	Redis	Grep	povray
	WL11	Redis	povray	Redis	povray	libquantum

PDD Accuracy

PDD achieves high accuracy

PDD Accuracy

PDD achieves high accuracy

PDI Effectiveness

PDI Effectiveness

PDI Effectiveness

Scalability

Conclusion

