
Prophet: Precise QoS Prediction on Non-Preemptive Accelerators
to Improve Utilization in Warehouse-Scale Computers

Quan Chen†1 Hailong Yang‡1 Minyi Guo†

Ram Srivatsa Kannan? Jason Mars? Lingjia Tang?
†Department of Computer Science and Engineering, Shanghai Jiao Tong University

‡School of Computer Science and Engineering, Beihang University
?Department of Computer Science, University of Michigan - Ann Arbor

{chen-quan, guo-my}@cs.sjtu.edu.cn, hailong.yang@buaa.edu.cn, {ramsri, profmars, lingjia}@umich.edu

Abstract
Guaranteeing Quality-of-Service (QoS) of latency-sensitive
applications while improving server utilization through ap-
plication co-location is important yet challenging in mod-
ern datacenters. The key challenge is that when applications
are co-located on a server, performance interference due to
resource contention can be detrimental to the application
QoS. Although prior work has proposed techniques to iden-
tify “safe” co-locations where application QoS is satisfied
by predicting the performance interference on multicores, no
such prediction technique on accelerators such as GPUs.

In this work, we present Prophet, an approach to precisely
predict the performance degradation of latency-sensitive ap-
plications on accelerators due to application co-location.
We analyzed the performance interference on accelerators
through a real system investigation and found that unlike on
multicores where the key contentious resources are shared
caches and main memory bandwidth, the key contentious re-
sources on accelerators are instead processing elements, ac-
celerator memory bandwidth and PCIe bandwidth. Based on
this observation, we designed interference models that en-
able the precise prediction for processing element, acceler-
ator memory bandwidth and PCIe bandwidth contention on
real hardware. By using a novel technique to forecast solo-
run execution traces of the co-located applications using in-
terference models, Prophet can accurately predict the per-
formance degradation of latency-sensitive applications on

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c� 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037700

non-preemptive accelerators. Using Prophet, we can iden-
tify “safe” co-locations on accelerators to improve utiliza-
tion without violating the QoS target. Our evaluation shows
that Prophet can predict the performance degradation with
an average prediction error 5.47% on real systems. Mean-
while, based on the prediction, Prophet achieves accelerator
utilization improvements of 49.9% on average while main-
taining the QoS target of latency-sensitive applications.

Keywords Quality-of-Service Prediction; Non-Preemptive
Accelerators; Warehouse-Scale Computers

1. Introduction
Latency-sensitive applications (LS applications) running
on Warehouse-Scale Computers have stringent Quality-of-
Service (QoS) requirements to provide the satisfactory user
experience. To satisfy a QoS target, servers hosting LS appli-
cations are commonly over-provisioned and remain under-
utilized [7, 16, 34]. With accelerators gaining popularity in
large-scale datacenters, similar over-provisioning is also ap-
plied to accelerators [19, 20, 43]. In addition, the diurnal
user load pattern often leaves servers underutilized during
the off-peak hours [8, 34], which exacerbates the low uti-
lization problem in datacenters. Co-locating multiple appli-
cations onto fewer hardware resources alleviates the low uti-
lization problem [15, 33]. However, the contention on shared
resources can cause severe performance interference, which
is detrimental to meeting QoS targets [16, 31, 33]. Therefore,
it is critical to improve resource utilization without violating
the QoS target of LS applications.

A large body of prior work [14, 16, 32, 33, 46, 50, 53]
focus on precise prediction of performance interference due
to the shared resource contention on CPUs. Such QoS pre-
diction is then used to identify “safe” co-locations where
predicted interference to the LS application is within a safe

1 Part of the work was conducted as a postdoc fellow of Clarity Lab at the
University of Michigan.

17

Shared Cache

(a) Multicore CPU

P1 P2

(b) Non-preemptive accelerator
Accelerator

CPU

Processing E
lem

entsMain Memory Global Memory

PCIe

Host

P1
P2

…

… …

…

Pn

…

Pn

Task Queue

SMT

Main Memory

��

�
PE

PE

Figure 1: Performance interference on multicore CPU and
non-preemptive accelerator.

margin. These “safe” co-locations can effectively improve
server utilization while satisfying QoS targets. However, ex-
isting techniques only consider interference in the context of
multicore CPUs, and are not applicable to non-preemptive
accelerators such as GPUs. As shown in Figure 1(a), prior
work focuses on shared resources on multicores includ-
ing shared caches, memory controller and simultaneous
multi-threading (SMT). But, as shown in Figure 1(b), for
non-preemptive accelerators, performance interference orig-
inates from a different set of shared resources including ¨
processing elements (PEs), ≠ global memory bandwidth,
and Æ PCIe bandwidth. To achieve precise QoS predic-
tion for these accelerators, it is necessary to design novel
approaches to account for these new sources of contention.

Through real system investigation, we found that pre-
cisely predicting the QoS interference between co-located
applications on non-preemptive accelerators is especially
challenging due to the complex effects and interactions of
several runtime factors affecting the contention behaviors.
As shown in Figure 1(b), when multiple applications sub-
mit tasks to the same accelerator, performance interference
originates from the contention on PE, global memory band-
width and PCIe bandwidth. The contention on PEs depends
on the extent computational tasks overlap with each other.
The overlapping in turn depends on several factors such as
occupancy and the amount of computational resources. The
effect of the overlapping is unknown as most accelerators
use proprietary driver software for scheduling tasks. If mul-
tiple tasks run on different PEs concurrently, they access data
from the shared global memory and contend for the limited
global memory bandwidth. Concurrent data transfers gener-
ate contention on the PCIe bandwidth, which is determined
by the type of data transfers (shared or exclusive) as well as
the amount of overlapping transfers. Moreover, the complex
interaction of interference on different resources further ex-
acerbates the difficulty to precisely predict the QoS of LS
applications. For instance, PCIe interference delays the start
time of task execution, which in turn introduces variability
into the overlapping proportion of concurrent task execution
and eventually alters the contention characteristics.

These findings motivate our design for a new methodol-
ogy, Prophet, to precisely predict the performance degra-
dation for co-locations on non-preemptive accelerators.
Prophet carefully models the performance interference on

PEs, global memory bandwidth and PCIe bandwidth. The
performance interference model for PEs considers several
runtime factors such as occupancy and utilization of PEs
to calculate the portion of the tasks capable for concurrent
execution and predict the queuing delay due to resource con-
tention. The global memory bandwidth interference model
considers the bandwidth requirements of concurrent tasks
and the number of PEs each task occupies to calculate task
execution slowdown due to bandwidth contention. The PCIe
performance interference model distinguishes different data
transfer tasks and quantitatively identifies the potential band-
width contention, especially when multiple data transfer
tasks execute concurrently. To capture the contention inter-
action between the shared resources, Prophet uses a holis-
tic approach combining interference models for PEs, global
memory bandwidth and PCIe bandwidth to synthesize and
forecast the execution trace of co-located applications. With
the precise prediction of performance interference using the
above approach, Prophet identifies the applications that can
be safely co-located on accelerators to improve utilization
while satisfying the QoS target of LS applications.

Specifically, the contributions of this paper are as follows:

• Investigating Performance Interference on Acceler-
ators Comprehensively- The real system investiga-
tion studies the performance interference across several
shared resources on accelerators and demonstrates that it
is fundamentally different from CPUs. In addition, an in-
depth analysis is provided to understand the contention
characteristics across different resources.

• Modeling Performance Interference across Various
Resources - Novel interference models are proposed to
predict the contention behaviors on PEs, global memory
bandwidth and PCIe bandwidth. We consider the over-
lapping execution on the PEs as well as different types of
data transfer tasks in our models to accurately estimate
the amount of interference on individual resource.

• Predicting Performance Interference through Syn-
thesizing the Co-located Execution - We present a
synthesis approach that leverages all the interference
models to model the compound effect of interference
across multiple resources during the entire execution of
the co-located applications. By synthesizing the execu-
tion traces, Prophet is able to precisely predict the per-
formance degradation under co-location.

• Improving Accelerator Utilization - Based on the pre-
cise interference prediction from Prophet, we can steer
the application scheduling on accelerators with “safe”
co-locations that achieve utilization improvement with-
out violating the QoS of LS applications.

2. Real System Investigation
In this section, we investigate the types of resource con-
tention that lead to significant performance interference for

18

Figure 2: Performance degradation of compute-intensive
LS applications when they are co-located with compute-
intensive batch applications.

Figure 3: Snapshot of task execution on real system GPU.

co-located applications on accelerators using real systems.
Specifically, we seek to answer the following questions:

• Will LS applications suffer from large performance
degradation due to application co-locations on GPUs?

• If so, what are the root causes of the large interference?
• What are the key requirements for designing a mecha-

nism to precisely predict such performance interference?

2.1 Experimental Setup
As prior work has shown that GPUs have become ever-
more important for future datacenter scaling [23, 43], we
use GPUs as our target accelerator in this work. Our LS
applications include an emerging Intelligent Personal Assis-
tant (IPA) application Sirius [20] and a Deep Neural Net-
work (DNN) service DjiNN [19]. These applications are exe-
cuted as resident services on the accelerator. There is a strin-
gent QoS target for these applications. We use Rodinia [12]
as batch applications. In our experiment, LS applications
and batch applications submit tasks to the same accelerator
concurrently. In order to investigate the impact of various
interference on the performance degradation, we use both
compute-intensive and PCIe-intensive applications in our in-
vestigation. More details of the experimental hardware and
benchmarks are described in Section 7.1.

2.2 Task Execution Interference
The contention on PE and global memory bandwidth often
causes task execution interference. We first investigate the
impact of the interference on the performance of LS appli-
cations. For this experiment, we use compute-intensive co-
runners with negligible PCIe bandwidth requirements.

Figure 2 presents the performance degradation of LS ap-
plications when they are co-located with compute-intensive
batch applications. In this figure, the x-axis shows the co-
location pairs while the y-axis presents the performance
degradation of the LS application. For example, md under

Figure 4: Performance degradation of PCIe-intensive LS
applications when they are co-located with PCIe-intensive
batch applications.

asr presents the performance degradation of the LS appli-
cation asr when co-located with lavaMD. As shown in the
figure, different batch applications cause varying amounts of
performance degradation to the co-located LS applications,
ranging from 1.1x to 17.5x. The performance degradation
in this experiment is mainly due to the queuing delay at the
PEs of the accelerator, and the global memory bandwidth
contention between PEs.

Because existing commodity accelerators such as GPUs
do not support task preemption between co-located applica-
tions to avoid the costly context switch overhead [39], tasks
from LS applications need to wait for all previously submit-
ted tasks to complete before it can be executed. This queu-
ing delay leads to large performance degradation when the
co-located applications contend for PEs. Modern accelera-
tors, such as Nvidia Kepler GPUs allow multiple tasks run
on different PEs concurrently [1]. In this case, the concur-
rent tasks access data from global memory simultaneously
and the contention may also degrade the performance of co-
located applications.

Figure 3 presents an example execution trace of compute-
intensive tasks on a Nvidia GPU. We can see that the tasks
of LS application gmm are delayed significantly by the tasks
of batch application md. Although part of the execution has
concurrent tasks by utilizing Nvidia’s Multi-Process Service
(MPS) [1], the queuing delay created by PE contention is
not fully eliminated. Meanwhile, with MPS, gmm’s tasks and
md’s tasks may run concurrently. In this case, the contention
on the global memory bandwidth between concurrent tasks
also contributes to the performance interference.

2.3 Data Transfer Interference
Besides the contention for PEs and global memory band-
width, co-located applications also contend for the limited
PCIe bandwidth when transferring data between the host and
the accelerator. To investigate whether and how PCIe band-
width contention affects the QoS of LS applications, we co-
locate PCIe-intensive applications, and present the perfor-
mance degradation in Figure 4. We observe that the con-
tention on PCIe bandwidth also leads to significant perfor-
mance degradation of LS applications.

When multiple applications transfer data through PCIe si-
multaneously and share bandwidth, the reduced bandwidth

19

Figure 5: Snapshots of data transfers over PCIe bus.

slows down the data transfer, resulting in large performance
degradation. In addition, certain programming interfaces
(e.g., CUDA [36]) allow programmers to create data transfer
tasks that fully occupy the PCIe bandwidth (e.g., memory
copy tasks from/to pinned memory in CUDA), causing even
more significant slowdown to other co-runners. As shown
in Figure 4, batch applications that use bandwidth-exclusive
data transfer tasks (BE tasks) such as pf-ex and bfs-ex result
in much larger performance degradation than the ones that
use bandwidth-sharing data transfer tasks (BS tasks).

Figure 5 presents the contention behaviors for PCIe band-
width between latency-sensitive (stemmer) and batch (pf)
applications. In Figure 5(a), both applications are using BS
tasks. Although the performance of LS application degrades
due to contention, both applications can transfer data con-
currently. On the other hand, as shown in Figure 5(b), pf-ex
uses bandwidth-exclusive transfer, and causes much higher
delay (2.7x) to stemmer compared to pf.

2.4 Challenges for Precise QoS Prediction on
Non-Preemptive Accelerators

Our real system investigation has shown that task execu-
tion interference and data transfer interference together re-
sult in significant performance degradation. However, pre-
cisely predicting the degradation is not trivial due to the
complex interference behaviors on non-preemptive accelera-
tors. Specifically, there are several key challenges to achieve
precise prediction.

(1) Task execution interference varies due to the over-
lapped task execution - The amount of degradation depends
on the overlapped/concurrent execution during runtime be-
tween co-located applications (PE contention). Long queu-
ing delay occurs to the LS application if the tasks cannot run
concurrently due to the large occupancy. Otherwise, when
tasks run concurrently, the global memory bandwidth con-
tention could increase the duration of concurrent tasks.

(2) Data transfer interference varies - There are two
types of data transfer tasks on accelerators that lead to dif-
ferent PCIe contention behaviors. BS task allows sharing
the PCIe bandwidth between co-located applications, how-
ever bandwidth-exclusive data transfer preempts all other
data transfer until it completes. In order to predict the per-
formance interference due to PCIe bandwidth contention, it
is necessary to model the contention behaviors of different
types of data transfer tasks.

(3) A holistic approach is required to model the com-
plex interference behaviors - Contentions across multiple
shared resources on accelerators exhibit complex interac-
tions and collectively affect the actual performance degra-
dation experienced by LS applications. Therefore, a holis-
tic approach is required to capture the compound effects of
contentions among multiple shared resources and model the
interference behaviors.

3. Prophet Methodology
In this section, we present Prophet, which enables precise
QoS prediction for co-locations on non-preemptive accel-
erators by considering contention for PEs, global memory
bandwidth, and PCIe bandwidth.

3.1 Design Principals of Prophet
To address the challenges for precise QoS prediction, we
design and implement Prophet based on three principals.

• Prophet should be able to predict when the co-located
tasks can and cannot run concurrently, capture the queu-
ing effect of non-overlapped execution due to PE con-
tention, model the interference of overlapped execution
due to global memory bandwidth contention.

• Prophet should be able to model interference behaviors
between data transfer tasks and quantify the performance
degradation due to PCIe bandwidth contention.

• Based on the precise QoS prediction, Prophet should be
able to identify “safe” co-location pairs to steer appli-
cation scheduling on accelerators, improving accelerator
utilization without violating the QoS of LS applications.

3.2 Prophet Overview
Figure 6 presents the overview of Prophet. Prophet takes
real-system solo-run profiles of applications as input to pre-
dict the performance interference when these applications
are co-located on the accelerator. Prophet is composed of
four main components: schedule predictor, task queues, task
execution model, and data transfer model.

Solo-run profiles - Similar to previous work on QoS pre-
diction for CMP and SMT [33, 50, 53], Prophet profiles LS
applications and batch applications separately. During profil-
ing, each application runs alone and its execution profile is
collected for interference prediction. The solo-run prevents
the execution profile being interfered by other co-runners.
We collect solo-run profiles of applications when they ac-
cept actual query requests, which have different inputs.

The profile includes task order and task duration of
each application, profiled using Nvidia GPUs automatically
(more details in Table 1). Prophet predicts the performance
degradation when multiple applications are co-located by
replaying and interleaving solo-run profiles of co-located
applications. In addition, because hardware configurations
such as the number of PEs and core frequency vary across

20

Task Execution Model

Sequential

Data Transfer Model

Shared

Exclusive

LS applications

Batch applications

…

…

Schedule Predictor

…

k1k2k3k4

Ready Time Table

P1

Pn

t1 tn…Schedule
Predictor

�

��

�

Active task info

Solo-run profiles

Task and Data Transfer QueuesDNN
service

IPA
service

Data Transfer Queue
(Host to Accelerator)

Computational
Task Queue

Data Transfer Queue
(Accelerator to Host)

k1

k4

Data transfer info
(HtoD && DtoH)

k2 k3
Concurrent

Global Memory Bandwidth

Figure 6: Design of Prophet.

platforms, to achieve the most accurate prediction, Prophet
collects solo-run trace on each hardware platform. That be-
ing said, techniques that predict cross-platform solo perfor-
mance [49] can be leveraged by Prophet to further predict
cross-platform co-run performance.

Schedule predictor and task queues - As illustrated
in Figure 6, Prophet has a schedule predictor that estimates
how tasks (both computational and data transfer tasks) from
co-located applications are scheduled on real hardware and
when the task will complete. When the schedule predictor
schedules a task for execution, the task is first pushed into
the corresponding task queue. For tasks in the queues, the
predictor then uses the task execution model and data trans-
fer model to predict when each task will complete. This task
completion information is used to update a ready time table
to track the next ready tasks. The process is illustrated on the
right side of Figure 6:

(1) Schedule predictor maintains a ready time table to
keep track of task completion information and next ready
tasks. (2) Schedule predictor fetches the next ready tasks
from the solo-run profiles. (3) Schedule predictor pushes
tasks to corresponding task queues. (4) For tasks in the
queues, task execution model and data transfer model pre-
dict the task completion time based on its solo-profile. The
completion time is used to update the ready time table.

Once all the tasks in co-located application’s solo-run
profiles complete, Prophet reports the latency of LS appli-
cations in the presence of interference. More details of the
predictor and the system are described in Section 6.

Task execution model and data transfer model - In
Prophet, two key components that are critical for precise pre-
diction are the task execution model and the data transfer
model, which model task execution and data transfer behav-
iors on real accelerator hardware. To achieve precise predic-
tion, these two models need to accurately reflect real hard-
ware behaviors. In Prophet, we propose a concurrent task ex-
ecution model to predict the actual task execution pattern in
emerging non-preemptive accelerators. Both PE contention
and global memory bandwidth contention are considered in
this model. In the data transfer model, based on our real
system investigation, we model two types of data transfer
tasks (bandwidth-sharing and bandwidth-exclusive), which
use PCIe bandwidth in different manners. Prophet adopts
plug-and-play design so that programmers can develop their

own models and plug them into Prophet if their accelerators
use different task scheduling or data transfer techniques.

4. Task Execution Model
Task execution interference in accelerators is one key fac-
tor that results in the QoS violation of LS applications when
co-located. While some accelerators still use the traditional
sequential task execution model to schedule tasks, more and
more emerging commodity accelerators, such as Nvidia Ke-
pler GPUs, can already execute multiple independent tasks
simultaneously using Concurrent Task Execution [1] to in-
crease the hardware utilization. However, the design details
of how these independent tasks are executed concurrently,
including how the global memory bandwidth and PEs are
shared between tasks, are kept as a black-box. In this section,
we first provide a brief background of task execution on ac-
celerators; then present the traditional sequential model and
our novel model that precisely captures the concurrent task
execution behaviors on commodity accelerators. Our task
execution model allows Prophet to predict the completion
time of a computational task.

4.1 Background of Task Execution on Accelerators
In popular accelerators such as GPUs, a large amount of
parallel threads in a task are scheduled in the granularity of a
warp (32 threads on Nvidia GPU [27]). Threads in the same
warp execute the same instruction but process different data
sets. A PE can only execute warps in the same task.

Non-preemptive accelerators execute tasks in the first-
come-first-serve manner [9, 24]. When a task k is submit-
ted to the accelerator, if the accelerator is free, the task will
be executed immediately. However, if the accelerator is cur-
rently executing other tasks, k needs to wait for all the previ-
ous tasks complete if sequential task execution is adopted by
the accelerator. On the other hand, if the accelerator sched-
ules tasks using concurrent task execution, k may run earlier
whenever there are free PEs available. In Figure 7, we show
the difference between sequential task execution and concur-
rent task execution.

4.2 Sequential Task Execution Model
As shown in Figure 7(a), the end-to-end latency of a compu-
tational task consists of two parts: the queuing time and the
actual execution time for sequential task execution [54].

21

(a) Sequential execution (b) Concurrent execution

k2
k3

k1
 k2

k3

Accelerator timeline
k1

k1
k2

k3
Is

su
in

g
Ex

ec
ut

io
n

Accelerator timeline

k1
k2

k3
Delay
Submit task

Kernel overlap

Figure 7: Comparison between sequential task execution and
concurrent task execution on non-preemptive accelerator.

Timeline

twaiting trun

k1
k2k2 k1
k3

tqueuing
Task Queue

k3
Tsubmit

PE allocation

…

… …

… …

PEs PEs PEs PEs
…

…

…

…

batch 1 batch 2 batch 3
batch batch

Figure 8: Modeling concurrent task execution.

When a task k of duration trun is submitted to the acceler-
ator at time T , suppose there are still m tasks queued for the
accelerator. Let t1, ..., tm represent the duration of the m tasks
and tremain represent the remaining time of the task currently
running on the accelerator. Because tasks are executed se-
quentially, the completion time of k (denoted by T k

comp) can
be calculated using Equation 1.

T k
comp = Tsubmit + trun +

m

Â
i=1

ti + tremain (1)

Note that, the actual execution time of a computational
task when it is co-located with other applications equals
to its execution time while it runs alone. This is because
task k can use all the PEs it needs once it is executing,
no matter whether it is co-located with other tasks. The
performance degradation of k comes from the queuing time
for the accelerator.

4.3 Concurrent Task Execution Model
In addition to sequential task execution, tasks can also be
executed concurrently on accelerators with such support [1]
(Figure 7(b)). However, it is much more challenging to
model concurrent task execution because the execution de-
tails, such as the kernel overlapping time and the PE as-
signment policy are kept as an industry secret and remains
as a blackbox. In the concurrent task execution model, we
consider both contention on PEs and contention on global
memory bandwidth.

We made three observations during the investigation re-
garding the behaviors of concurrent tasks:

• Observation 1 - A task will use as many PEs (e.g.,
streaming multiprocessors in GPUs) as possible if it has
enough warps.

• Observation 2 - Only when a task cannot fully utilize all
the PEs, a queued task can start to use the free PEs.

Table 1: Parameters used in the concurrent execution model

Type Parameter Name Symbol

Task Configuration

Duration of the task t
Theoretical occupancy Occu [37]

Number of warps Nw
Global memory bandwidth req. per PE bw

Hardware Configuration
Number of PEs Np

Maximum number of warps per PE Nmw
Effective global memory bandwidth GB

• Observation 3 - If there are PEs available, the queued
tasks use these PEs in first-come-first-server manner.

Based on our real system investigation, we identify a set
of hardware and task information that our concurrent task
execution model uses to predict the completion time of each
task. The task information can be automatically collected us-
ing a profiler such as nvprof [2] for Nvidia GPUs. Table 1
describes this task information used in our concurrent task
execution model as parameters. In the table, the theoreti-
cal occupancy [37] of a task is the ratio of active warps to
the maximum number of warps supported on a PE (stream-
ing multiprocessor). The theoretical occupancy can be im-
pacted by many factors, such as the amount of registers used
by each thread, the amount of shared cache used by each
warp, etc. Based on the information in the solo-run profiles,
The theoretical occupancy of a task can be calculated as de-
scribed in Nvidia’s occupancy calculator [37]. In addition,
to obtain the parameter “global memory bandwidth require-
ment per PE” bw for each task in Table 1, we also profile
each application alone with a small input data with which the
application can only utilize a small number of PEs. The in-
put is small enough so that the PEs do not saturate the global
memory bandwidth. In this case, the parameter of a task can
be calculated as the overall global memory bandwidth us-
age divided by the number of PEs the task used. We do not
extract this parameter from actual profiles is because if the
input data is large (the case of some actual queries), most
PEs are active and they may contend for the global mem-
ory bandwidth, which results in the under-estimation of this
parameter.

Based on aforementioned observations, Figure 8 illus-
trates the lifetime of several concurrent tasks. As shown
here, task k3 on a non-preemptive accelerator consists of
three phases: waiting to arrive at the head of the task queue
on the accelerator (tqueuing), waiting for free PEs at the head
of task queue (twaiting), and running on the PEs (trun). The
completion time of task k can be calculated by Tsubmit +
tqueuing + twaiting + trun. In this equation, Tsubmit and tqueuing
can be directly collected during solo run of the task, while
twaiting and trun need to be predicted.

4.3.1 Calculating Task Start Time:
As presented in observation 2, when a task arrives the head
of the queue, it can start to run only when there are free PEs.
To model this behavior, for each active computational task,
we calculate how many PEs it will use at different time when

22

it is scheduled to run. Suppose the specification of task k is
summarized in Table 1. Each PE can execute Nmw ⇥Occu
warps of k in a batch, and the optimal duration of each batch
from task k when it runs alone and there is no global memory
bandwidth contention, can be calculated as Equation 2.

Solok =
t

dNw/(Nmw ⇥Occu⇥Np)e
⇥min{1,

GB
bw⇥Np

} (2)

In this equation, we assume different batches of warps in
the same task take the same time to run on the accelerator
because they execute the same instructions. Note that, for
a task, its occupancy is roughly constant across different
inputs.

During k’s execution, the concurrent task execution model
checks how many PEs are available for a batch, and calcu-
lates the number of warps executed in that batch. If there
are Nf ree PEs available for a batch of warps in k, then the
accelerator can complete Nf ree ⇥Nmw ⇥Occu warps in that
batch. In addition, it is also possible that the warps of k can-
not fully utilize the available Nf ree PEs. In that case, k only
occupies the needed PEs and leaves the rest for later tasks.
For example, in Figure 8, k3 can only start to run when there
are free PEs left by k1 and k2 (e.g., when k2 starts its second
batch of warps).

By keeping track of when PEs are available, Nf ree, and
the number of unprocessed warps in k, the start time of task
k and the number of batches in k can be determined.

4.3.2 Calculating Task Complete Time:
When task k starts to run, we predict its duration and up-
date the duration of all the active tasks by modeling global
memory bandwidth contention. Global memory requests are
served in First-Ready First-Come-First-Serve manner or its
variations [51]. Therefore, concurrent tasks are slowed down
by the same times when they contend for global memory
bandwidth. Let Solok represent the duration of a warp batch
from task k when it runs alone as calculated in Equation 2.
Suppose there are nb batches in task k as calculated in pre-
vious section. We iterate through every batch, and predict its
actual duration.

For the j-th (1 j nb) batch in task k, suppose k uses
pe PEs in this batch, and n other tasks k1, ..., kn are still active
and run on other PEs. For these active tasks, we further use
pe1, ... pen to represent the number of PEs they are using,
and bw1, ..., bwn represent their global memory bandwidth
requirement per PE respectively.

Equation 3 predicts the actual duration of the j-th batch of
k. In this equation, bw⇥ pe is the global memory bandwidth
required by task k, and Ân

i=1(bwi⇥ pei) is the global memory
bandwidth required by the other n active tasks. If bw⇥ pe+
Ân

i=1(bwi ⇥ pei) is larger than the effective hardware global
memory bandwidth GB, the execution of the j-th batch is
slowed down proportionally. Otherwise, the duration of the

batch at co-location equals to its solo-run duration Solok.

Tj = Solok ⇥max{
bw⇥ pe+Ân

i=1(bwi ⇥ pei)

GB
,1} (3)

Finally, the completion time for task k, denoted by T k
comp,

can be calculated in Equation 4. In the equation, Tsubmit and
Tqueuing are collected directly through profiling and twaiting is
calculated by keeping track of when PEs are available.

T k
comp = Tsubmit + tqueuing + twaiting +

nb

Â
i=1

Tj (4)

It is worth noting that, executing task k may slow down
other active tasks, and later tasks may also slow down k
due to global memory bandwidth contention. Deduced from
aforementioned observation 1 and 2, when k starts to run, all
the previous active tasks are running in the their last batches,
otherwise the warps of these tasks would take all the PEs and
k cannot start. Therefore, when iterating through the batches
of k to calculate its complete time, we update the complete
time of all the active tasks as well. For task ki (1 i n) that
is active duration the j-th batch of task k, let tol represent the
overlap time of its last batch with the j-th batch of k. tol can
be calculated by subtracting the start time of the batch from
T ki

comp. Equation 5 calculates the new complete time of task
ki (denoted by T ki

comp).

T ki
comp+= tol ⇥ (

max{ bw⇥pe+Ân
i=1(bwi⇥pei)
GB ,1}

max{Ân
i=1(bwi⇥pei)

GB ,1}
�1) (5)

5. Data Transfer Model
In addition to contention for PEs and global memory band-
width, contention for PCIe bandwidth, which significantly
impacts the data transfer speed, can also lead to significant
performance degradation. In this section, we propose mod-
els to predict the duration of a data transfer task when it con-
tends PCIe bandwidth with other data transfer tasks.

5.1 Background of Data Transfer Tasks
Our real system study shows that there are two types of
data transfer between the host and the accelerator, bandwidth
sharing data transfer task (BS task) and bandwidth exclusive
data transfer task (BE task), to transfer data through the
PCIe bus [10]. A BS task can run concurrently with other
BS tasks and they share the PCIe bandwidth evenly. On the
other hand, a BE task consumes all the PCIe bandwidth, and
has a higher priority than BS tasks. For example, in CUDA
for GPU, memory copy tasks from/to pageable memory are
BS tasks and memory copy tasks from/to pinned memory
are BE tasks.

It is challenging to predict the duration of a data transfer
task d directly when it is launched, because its duration can
be affected by various factors including the number of active
transfer tasks, the data transfer overlapping pattern, the type
of each data transfer task, etc. Making prediction even more

23

d9

(a) Share PCIe bandwidth

d2
d1

d3

d3

d2

d1

(b) Queued by BE tasks (c) Preempt PCIe bandwidth

Delay
Submit request

BS task
BE task

d6

d5

d4

d9

d8

d7

d7

Transfer
requests

Actual
transfers d6

d5

d4
d8 d8

d9

Figure 9: Scenarios of PCIe bandwidth contention when BS tasks and BE tasks share the PCIe bus.

d1

di

dn

d
Submit

d1

dn-1
dn

d

BS task Calculate duration in segments
S1 S2 Sn

…
…

…

PCIe transfer timeline PCIe transfer timeline

Figure 10: Calculate the duration of BS data transfer tasks
when a new BS data transfer task is submitted.

challenging, the data transfer tasks submitted after d will
also impact d’s duration. To solve this problem, our proposed
model updates the duration of all active data transfer tasks
whenever a new data transfer task is submitted.

5.2 Modeling Data Transfer over PCIe
Figure 9 illustrates three scenarios of PCIe bandwidth con-
tention that can happen when BS task and BE task co-exist.
We have empirically verified these scenarios on our GPU
platform using the profiler, which is also consistent with
prior work’s observation [10]. In Figure 9(a), all the ac-
tive data transfer tasks are BS tasks, sharing the bandwidth
evenly. In Figure 9(b), the newly submitted data transfer task
d4 is delayed until all previous BE data transfer tasks com-
plete. In Figure 9(c), the newly submitted task d7 is BE and
has a higher priority. In this case, it preempts the existing BS
data transfer tasks.

5.2.1 Scenario 1: Share PCIe Bandwidth
Figure 10 shows how PCIe bandwidth is shared among the
concurrent data transfer tasks. Suppose when a new BS data
transfer task d is submitted, there are still n BS data transfer
tasks are active. If the PCIe bandwidth is high enough to
support all the tasks to transfer data in full speed, their
execution time is the same as their solo-run execution time.
Otherwise, they need longer time to transfer data due to
smaller bandwidth. In this case, let d1, ..., dn represent the n
tasks in the ascending order of their expected complete time.
When d is submitted, it is inserted into the data transfer tasks
according to its original expected complete time (Tsubmit +
trun), where Tsubmit is the time when d is submitted and trun
is d’s duration when it runs alone. As shown in Figure 10,
because d shares the PCIe bandwidth with different number
of data transfer tasks in different stages, the model needs
to calculate the duration of each active data transfer task
by segments. To this end, for all the active data transfer

tasks, the transferring is divided into n segments based on
the expected complete time of every active data transfer task,
and the number of tasks that share the bandwidth in segment
Si (denoted by Ni) can be calculated by Equation 6.

Ni =

(
n� i+2 , if Si covers part of d
n� i+1 , if Si does not cover any part of d

(6)

Let ODi represent the time duration of segment Si before
d is submitted. Note that, before d is submitted, the number
of tasks sharing the bandwidth in segment Si (denoted by
ONi) is n� i+1.

In our model, all the BS data transfer tasks have the same
priority and they share the PCIe bandwidth fairly. Therefore,
the new duration of segment Si after d is submitted, denoted
by Di, can be calculated by Equation 7.

Di = ODi ⇥
Ni

ONi
(7)

Once the duration of each segment is known, the com-
plete time of active task di can be calculated by Equation 8.

T di
comp = Tsubmit +

i

Â
j=1

D j (8)

In our model, once a new BS data transfer task is sub-
mitted, the complete time of all the active data transfer tasks
have to be updated because the newly submitted task affect
the PCIe bandwidth that each task can use.

5.2.2 Scenario 2: Queued by BE Tasks
As illustrated in Figure 9(b), if a data transfer task (no
matter bandwidth-sharing or bandwidth-exclusive) finds that
a BE data transfer task is transferring data, it cannot start
to transfer data until all the previous BE data transfer tasks
complete. For example, in Figure 9(b), d6 has to wait for d5’s
completion before it can transfer data; and d4 has to wait for
both d5 and d6’s completion before it can transfer data.

In this scenario, the actual time used by each task to
transfer data is not changed. The performance degradation
of data transferring is due to the queuing delay in this case.

Suppose there are n BE data transfer tasks are queued for
PCIe bus usage when a new data transfer task d of duration t
is submitted at Tsubmit . Let t1, ..., tn represent the duration of
the queued data transfer tasks, and let tremain represent the re-
maining time needed for the currently running data transfer
task. Note that, in this scenario, the currently running data
transfer task can only be a BE data transfer task, because the

24

queued BE data transfer tasks can preempt the PCIe band-
width otherwise (as shown in Figure 9(c)). Equation 9 cal-
culates the expected start time of d (denoted by T d

start).

T d
start = Tsubmit + tremain +

n

Â
i=1

ti (9)

Once d starts to run at T d
start , if d is a BE data transfer task,

then its complete time can be calculated as T d
start + t. On the

other hand, if d is a BS data transfer task, its end time can be
calculated as described in previous section, because it could
share PCIe bandwidth with other BS data transfer tasks.

5.2.3 Scenario 3: Preempt PCIe Bandwidth
As shown in Figure 9(c), when a BE data transfer task is
submitted at Tsubmit , it is also possible that the active data
transfer tasks are BS data transfer tasks. Because BE data
transfer task has higher priority, it will pause all the BS
data transfer tasks and start to transfer data immediately. For
example, in Figure 9(c), d7 pauses the on-going tasks, d8 and
d9, (or limit d8 and d9 to use very small bandwidth) and starts
to transfer its own data in full speed. d8 and d9 can resume
the data transfer once d7 completes.

In this case, the complete time of the newly submitted
task can be calculated as Tsubmit + t, where t is the data trans-
fer time when the task runs alone. Meanwhile, the comple-
tion time of every on-going BS data transfer task is increased
by t as well.

6. Putting It All Together
Prophet presents a holistic approach to predict and combine
task execution interference and data transfer interference due
to the PE contention, global memory bandwidth contention
and PCIe bandwidth contention.

The design of Prophet is already presented on the right
side of Figure 6. Prophet simulates how real-system accel-
erators process concurrent tasks submitted by multiple ap-
plications. On a real-system accelerator, tasks in the same
application are submitted and executed in a FIFO order. On
the other hand, tasks in different applications can run con-
currently on the accelerator if there are enough PEs, because
there is no dependency between these tasks.

To schedule tasks in the same way as the real accelerator,
the schedule predictor schedules tasks based on a ready time
table that contains the ready time of the first un-executed
task in each of the co-located applications. The task that
has smaller ready time is submitted earlier to the predic-
tor. When the prediction starts, every application is given
an initial start time and stored in the ready time table. As il-
lustrated in Figure 6, the schedule predictor first checks the
ready time table to decide where to obtain the next task. If
the schedule predictor decides to obtain the next task from
application P, then the first un-executed task k in P is pushed
into the corresponding queue according to its task type (com-
putational task, data transfer task from host to accelerator
or data transfer task from accelerator to host). After that,

Table 2: Hardware, software, and benchmarks

Specifications

Hardware CPU: Intel Xeon E5-2620 @ 2.10GHz
Accelerator: Nvidia GPU Tesla K40

Software OS: Ubuntu 14.04 x86 64 with kernel 3.16.0-41
Accelerator driver: CUDA 346.46, SDK 6.5, CUDA MPS

Benchmark Suite Workloads
Sirius Suite [20] asr, gmm, stemmer
Tonic Suite [19] dig, imc, ner, pos

Rodinia [12]
heartwall (hw), lavaMD (md), kmeans (kms), myocyte (mc),

backprop (bp), bfs, pathfinder (pf), hotspot (hs), nn,
bfs-ex, pathfinder-ex (pf-ex)

Prophet uses either task execution model or data transfer
model to calculate when k completes. The complete time of
k is used to update the ready time of next un-executed task
from application P stored in the ready time table.

In addition to the ready time table, Prophet maintains exe-
cution information for all the active tasks. For computational
tasks, the information includes when the task starts, the pe-
riod that the task cannot fully utilize all the PEs, the number
of PEs used in that period, the global memory bandwidth re-
quirement per PE of the task. For active data transfer tasks,
the transfer start time and the expected complete time are
also tracked. This information is used by the task execution
and data transfer models for predicting the complete time of
later tasks. Once all the tasks complete, Prophet can report
the latency of LS applications in the presence of interference.

7. Evaluation
In this section, we evaluate the accuracy of Prophet for pre-
dicting the performance degradation due to task execution
interference and data transfer interference. In addition, we
show the effectiveness of Prophet to guide application co-
locations, achieving high accelerator utilization without vio-
lating the QoS of LS applications.

7.1 Experimental Setup
We evaluate Prophet on Nvidia GPU K40. Hardware speci-
fication, software specification, and benchmarks are summa-
rized in Table 2. MPS [1] is used to enable concurrent task
execution on GPU. We use workloads from Tonic Suite in
DNN service DjiNN [19] and Sirius Suite in IPA application
Sirius [20] as LS applications, and both compute-intensive
and PCIe-intensive workloads from Rodinia [12] as batch
applications. We implement two data transfer modes in the
benchmarks. For example, bfs-ex and pf-ex use BE data
transfer tasks to transfer data between CPU and GPU, while
bfs and pf use BS data transfer tasks. The ratio of execution
time for computation and PCIe data transfer of each work-
load is shown in Figure 11. The LS applications gmm, asr,
dig and imc are more compute-intensive, while pos, ner and
stemmer are more PCIe-intensive.

In our evaluation, the performance degradation Deg of
LS applications due to co-location and the prediction error
Err for the degradation are defined in Equation 10. In the
equation, Lsolo and Lcolo are the latency of LS application

25

Figure 11: Percentage of execution time spent on computa-
tional tasks and data transfer tasks in each benchmark.

Figure 12: Performance prediction accuracy of Prophet for
LS applications in compute-intensive co-location pairs. The
average prediction error of Prophet is 5.9%.

when it runs alone, and when it is co-located with batch
applications respectively.

Deg =
|Lsolo �Lcolo|

Lsolo
, Err =

��Degpred �Degmeasured
��

Degmeasured
(10)

7.2 Performance Interference Prediction
We report prediction accuracy for all the 7⇥ 11 = 77 com-
binations of the 7 LS applications and the 11 batch appli-
cations in this section. In the following figures, the x-axis
shows the co-location pairs. For example, md under asr
means LS application asr is co-located with batch applica-
tion md.

7.2.1 Prediction for Compute-Intensive Co-locations
In this experiment, we evaluate the accuracy of Prophet
when predicting performance degradation due to task exe-
cution interference caused by PE and global memory band-
width contentions. We co-locate compute-intensive LS ap-
plications with compute-intensive batch applications. Fig-
ure 12 presents the resulting performance degradation for
LS applications measured on the real system. In addition,
we present the degradation predicted using Prophet as well
as the sequential task execution model (described in Sec-
tion 4.2, and used in I-Torque [41]).

The average performance degradation of LS applications
due to PE and global memory bandwidth contentions is 4.0x
and with the worst case being 17.5x (co-locating gmm and
md). When using Prophet to predict the performance inter-
ference, the prediction error ranges from 0.6% to 10.9% with
an average prediction error of 5.9%. On the contrary, the
sequential task execution model’s prediction error is up to
13100%. The main cause of the poor prediction accuracy of

Figure 13: Performance prediction accuracy for LS applica-
tions in PCIe-intensive co-location pairs. The average pre-
diction error of Prophet is 5.1%.

sequential model is the lack of consideration of the concur-
rent task execution on real emerging non-preemptive accel-
erators. In a sequential model, a kernel cannot run until pre-
vious kernels complete, resulting in severe overestimation
of latency-sensitive queries’ latency especially if kernels of
batch applications are long running but have low occupancy.
Prophet exhibits much higher prediction accuracy due to its
capability to capture the contention behaviors including the
queuing effect, concurrent task execution, and global mem-
ory bandwidth sharing.

7.2.2 Prediction for PCIe-Intensive Co-locations
Similarly, we evaluate the accuracy of Prophet for predict-
ing the performance degradation due to data transfer inter-
ference caused by PCIe bandwidth contention. To achieve
this, we co-locate applications that exhibit intensive PCIe
data transfers in this experiment. Because Bubble-Up [33]
and Bubble-Flux [50] can precisely predict main memory
bandwidth contention, as a baseline, we design and evaluate
bubble-based prediction for PCIe bandwidth contention (de-
noted by “Bubble” in Figure 13). According to the design
of Bubble-Up and Bubble-Flux, we implement PCIe bubble
to be a micro-benchmark that keeps transfer data via PCIe
bus and does not do any computation. The pressure on PCIe
bandwidth is changed by adjusting the number of instances
of the micro-benchmark.

As shown in Figure 13, PCIe-intensive LS applications
suffer from up to 21x performance degradation (co-locating
pos and pf-ex) and 4.5x on average. For all the co-located
applications, Prophet performs well in predicting the perfor-
mance degradation, with the prediction error ranging from
0.01% to 9.8% and on average 5.1%. In particular, the av-
erage prediction error for Sirius and Tonic applications is
6% and 4.4% respectively. On the contrary, bubble-based
approach performs much worse than Prophet, with the pre-
diction error ranging from 3.9% to 90.5% and on average
50.8%. This is because memory bandwidth is shared in first-
ready first-come-first-serve manner on real systems [35],
but data transfers through PCIe bus have priorities. Bubble-
based approach designed for memory bandwidth contention
is not able to capture this complex data transfer behavior
through PCIe bus.

26

Figure 14: Performance prediction accuracy for LS applica-
tions in low contention co-location pairs. The average pre-
diction error of Prophet is 5.5%.

During the evaluation, we observe that although the BE
data transfer tasks provide higher data transfer speed when
running alone, the exclusive transfer may severely slow
down other data transfer tasks, and result in severe perfor-
mance degradation of LS applications. This is because BE
data transfer tasks do not allow concurrent data transfer for
co-located applications, while BS data transfer task does not
have such restriction. Therefore, a long PCIe data transfer
task from batch applications could significantly delay the
data transfer task from LS application and cause severe QoS
violation. This observation provides useful insight to bound
the QoS of LS application under co-location. It is beneficial
for LS applications to use bandwidth-exclusive PCIe data
transfer for higher bandwidth. However, batch applications
should always use bandwidth-sharing transfer since it re-
duces the likelihood to significantly delay the data transfer
of LS applications under co-location.

7.2.3 Prediction for Low Contention Co-locations
In previous sections, we present results when both LS
and batch applications contend for the same resource. To
better understand the opportunity for utilization improve-
ment without severely degrading the performance, we co-
locate applications with different contention points, in this
case, compute-intensive LS applications with PCIe-intensive
batch applications and vice versa. As shown in Figure 14, the
average performance degradation for these co-locations is
2.39x, which is smaller than degradation when applications
suffer from serious interference due to the contention on the
same shared resources (4.0x for task execution interference,
4.5x for data transfer interference). For most co-locations
that are stressing on different resources, the performance
degradation is smaller with an average of 1.8x degradation.
For these co-locations, Prophet still maintains the similarly
high prediction accuracy with the average prediction error
of 5.5%. In particular, for Sirius and Tonic workloads, the
average prediction error is 4.6% and 6.3% respectively.

As confirmed by this experiment, there is optimization
space to steer the application co-location. Co-locating ap-
plications that are stressing on different resources alleviates
the performance interference. Therefore, precise prediction
of performance interference is critical to guarantee that ap-
plication co-locations satisfy the QoS target while improving
utilization.

Figure 15: The 95%-ile latency degradation for LS applica-
tions in all the 77 co-locations.

7.2.4 Prediction Accuracy for Tail Latency
Previous sections focus on predicting the average latency
degradation, in this section, we evaluate the accuracy of
Prophet for predicting the 95%-ile latency. Figure 15 shows
the 95%-ile latency degradation of LS applications in all the
77 co-locations. The figure demonstrates that for most of the
co-locations, Prophet is able to predict the tail latency accu-
rately. The average prediction error of Prophet for 95%-ile
latency is 13.5%. Note that this is slightly higher than the
average latency prediction. This is because the tail latency
is much more affected by the interference than the average
latency. We measured up to 60x tail latency degradation due
to interference. Thus a 13.5% prediction error can still ac-
curately identify reasonable co-location scenarios. In Sec-
tion 7.4, we show that the percentage of QoS violation in all
the co-locations identified by Prophet is smaller than 7.8%.

7.3 Improving Utilization and Maintaining QoS
With Prophet’s precise interference prediction for accelera-
tors, we can enable “safe” co-locations in order to improve
utilization without violating the QoS requirement. In this
experiment, for each LS application, we set its QoS target
to be under 2x of its solo latency and below 100 millisec-
onds [25, 40]. We use Prophet to predict how many instances
of each batch application can be co-located with each LS
application without violating the QoS. Our evaluation base-
line disallows co-locations on accelerator, which is the state-
of-the-art approach to bound QoS in modern WSCs without
a precise QoS prediction mechanism. To enable concurrent
task execution, we use MPS that supports up to 16 applica-
tions submitting tasks to GPU simultaneously. We could co-
locate 0 to 15 instances of batch applications on each GPU.
From WSC perspective, compared to the actual hardware
utilization, the achieved throughput for batch applications
when they are safely co-located with latency-sensitive ser-
vice is the ultimate performance optimization metric. There-
fore, when Prophet predicts that k batch applications can be
co-located with an LS application on the same accelerator
without violating QoS target, the utilization improvement is
calculated as k/15.

Improving Utilization - Figure 16 shows the utiliza-
tion improvement when co-locating batch applications with
each LS application guide by Prophet, and the actual mea-
sured oracle utilization improvement. There is a spectrum

27

Figure 16: Utilization improvement achieved by Prophet. It improves the accelerator utilization by 49.9% on average.

Figure 17: QoS of LS applications in all the 77 co-locations
based on Prophet’s prediction.

of achieved utilization improvement. The improvement is
high especially when compute-intensive LS application is
co-located with PCIe-intensive batch applications (e.g., co-
locating asr with pf) and vice versa. Prophet achieves up
to 93.3% of the maximum utilization, because these appli-
cations use different shared resources and the contention is
low. On the contrary, when the co-located applications con-
tend for the same shared resources (e.g., pos with bfs-ex, and
asr with hw), only a small number of batch applications can
be co-located with LS applications due to the QoS require-
ment. The utilization improvement drops to 0 in the worst
case, which means the co-location is not allowed. Benefiting
from the precise interference prediction, Prophet increases
the accelerator utilization by 49.9% on average, while the
measured oracle utilization improvement is 51.8%.

Meeting QoS Target - To demonstrate the capability of
Prophet in steering the application co-location while main-
taining the QoS target, we co-locate applications on real
GPU systems based on the co-location decisions predicted
by Prophet. For each co-location, Figure 17 shows the av-
erage performance of the LS application normalized against
its QoS target. We can find that only 7 out of the 77 co-
location decisions (less than 9.1%) result in slight QoS vio-
lation, while the QoS violation ranges from 0.4% to 7.8%.
For other co-locations, the QoS of LS applications is main-
tained with increased utilization.

7.4 Scale-out Study
Instead of improving the utilization of a single accelerator
as in previous sections, this section shows how to choose
co-locations to maximize the utilization of accelerators in a
datacenter. In this experiment, we model a cluster composed
of 700 Nvidia K40 GPUs and each 100 of them are running
one of the seven LS applications in Sirius suite and Tonic
suite. The batch workloads are composed of 11,000 applica-

Figure 18: Accelerator utilization when using Prophet to
select “safe” co-locations under each QoS policy.

Figure 19: Percentage of QoS violation in all scheduled co-
locations under each QoS policy.

tion instances evenly selected from the 11 batch benchmarks
shown in Table 2.

Figure 18 shows the accelerator utilization achieved by
Prophet under various QoS policies. In the figure, the base-
line does not allow accelerator co-location and the resulting
utilization is low. Prophet significantly improves the accel-
erator utilization by co-locating batch applications with LS
applications. For example, under 70% QoS policy (the QoS
target’s performance is 70% of solo performance), the accel-
erator utilization is increased to 80.15%.

Figure 19 presents the percentage of co-locations that suf-
fer from QoS violation when all PEs are fully utilized (left)
vs. when co-locations are suggested by Prophet (right) under
different QoS policies. The percentage of QoS violations is
defined as the number of co-locations that suffer from QoS
violation divided by the overall number of co-locations. For
all QoS policies, the percentage of QoS violation is smaller
than 7.8%. Note that for Prophet 95% and 80% QoS polices,
50% and 40% of the violations is under 2% QoS degrada-
tion, respectively. Even in the worst cases, the co-locations
suggested by Prophet violate the QoS target less than 10%,
compared to the naive full co-location case where more than
70% of the co-locations suffer more than 10% degradation.

28

Table 3: Comparison between Prophet and prior work

GPU sharing Interference prediction ProphetTimeGraph [26] Baymax [13] GPU-EvR [29] SMK [48] I-Torque [41] Bubble-Up [33, 50, 53] Quasar [16]
QoS Prediction 4 4 4
Work on Accelerator 4 4 4 4 4 4
Improved Utilization 4 4 4 4 4 4
Precise PCIe Modeling 4
Global Memory Modeling 4
Concurrent Kernel Exec. 4 4 4

8. Related Work
Precise prediction for performance interference on CPUs
has been identified as a key challenge in datacenters and is
widely studied in prior work [28, 33, 46, 50, 53]. However,
none of the prior work is applicable for non-preemptive ac-
celerators such as GPUs because the key factors that cause
performance interference among co-located applications are
fundamentally different on GPUs from on CPUs. More
specifically, the prior work focus on the resource contention
on CPUs including contention for shared caches, memory
bandwidth and function units for SMT cores. For instance,
Bubble-Up [33] and Bubble-Flux [50] quantify an applica-
tion’s sensitivity to contention by co-locating the application
with a set of cache-intensive micro-benchmarks with varying
working set size. The measured sensitivity curve is then used
to predict the potential performance degradation when the
application is co-located with a co-runner. The only shared
resource this work addresses is the shared cache and mem-
ory bandwidth. SMiTe [53] focuses on micro-architectural
shared resources on SMT servers including memory ports
and functional units, and relies on regression to achieve pre-
cise performance prediction.

These techniques would fail on accelerators because

• they neglect key performance factors on non-preemptive
accelerators: queuing delay for PEs, global memory
bandwidth contention and PCIe bandwidth contention.

• they neglect the complex interaction of interference on
different shared resources.

• PCIe bandwidth contention is significantly different from
well-studied main memory bandwidth contention.

Another related research direction aims at increasing ac-
celerator utilization through hardware sharing [3, 13, 38, 39,
45, 48]. Prior work in this direction mainly focuses on de-
signing novel kernel/warp schedulers, and they are not able
to predict performance interference caused by sharing ac-
celerators. Several techniques [4, 18, 29] including Time-
Graph [26] and GPUSync [17], are proposed to improve the
performance of realtime tasks (e.g., frame rate for video pro-
cessing) using fine-grained kernel scheduling when they are
co-located with low priority applications. They make sure
that sufficient resources are assigned to realtime tasks in the
long term but cannot guarantee QoS [29]. Baymax [13] does
not perform QoS prediction and cannot be used in selecting
co-runners. As such, this technique can only be applied after

co-schedules are decided. The only work that predicts inter-
ference on GPUs, I-Torque [41], assumes sequential kernel
execution and considers neither global memory bandwidth
contention nor PCIe bandwidth contention. We implemented
and evaluated the sequential model, and experimental results
show that its prediction error is much worse than Prophet for
emerging commodity GPUs.

Beyond interference prediction and kernel scheduling, a
large amount of techniques are proposed to improve applica-
tion performance on accelerators in general [5, 6, 11, 30, 42,
44, 47], and to model GPU performance/energy [21, 22, 52].
However, most of the existing GPU modeling work focuses
on modeling the performance of a single program on a spe-
cific GPU and is not able to be used to identify the “safe”
co-locations. Prophet instead focuses on providing satisfac-
tory QoS for LS applications while improving accelerator
utilization.

As a summary, Table 3 compares Prophet with prior GPU
sharing techniques and interference prediction techniques.

9. Conclusion
We present Prophet, a methodology to precisely predict the
performance interference for application co-location on non-
preemptive accelerators. With the precise interference pre-
diction from Prophet, “safe” co-location pairs are identified
to improve the utilization of accelerators without violating
the QoS of latency-sensitive applications. Through evaluat-
ing Prophet with emerging latency-sensitive applications, we
demonstrate the accuracy of Prophet in predicting the perfor-
mance interference due to resource contention on processing
elements, global memory bandwidth and PCIe bandwidth.
The average prediction error of Prophet is 5.47% across
pairwise co-locations. Based on the precise QoS prediction,
Prophet improves the non-preemptive accelerator utilization
by 49.9% on average through co-locations while maintain-
ing the QoS of latency-sensitive applications.

Acknowledgments
We thank our anonymous reviewers for their feedback and
suggestions. This work was partially sponsored by the Na-
tional Basic Research 973 Program of China under grant
2015CB352403, the National Natural Science Foundation of
China (NSFC) (61602301, 61502019), and by National Sci-
ence Foundation (NSF) under grants CNS-CSR-1419243,
CCF-SHF-1302682, and SHF-1553485.

29

References
[1] Nvidia Multi-Process Service. https://docs.nvidia.

com/deploy/pdf/CUDA_Multi_Process_Service_

Overview.pdf.

[2] Profiler User’s Guide. http://docs.nvidia.com/cuda/

profiler-users-guide.

[3] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte. The
Case for GPGPU Spatial Multitasking. In the 18th Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), pages 1–12. IEEE, 2012.

[4] P. Aguilera, K. Morrow, and N. S. Kim. QoS-aware Dynamic
Resource Allocation for Spatial-Multitasking GPUs. In the
19th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 726–731. IEEE, 2014.

[5] J. Anantpur and R. Govindarajan. PRO: Progress Aware GPU
Warp Scheduling Algorithm. In International Parallel and
Distributed Processing Symposium (IPDPS), pages 979–988.
IEEE, 2015.

[6] R. Ausavarungnirun, S. Ghose, O. Kayıran, G. H. Loh, C. R.
Das, M. T. Kandemir, and O. Mutlu. Exploiting Inter-Warp
Heterogeneity to Improve GPGPU Performance. In the 24th
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 25–38. ACM, 2015.

[7] L. A. Barroso and U. Hölzle. The Case for Energy-
proportional Computing. Computer, (12):33–37, 2007.

[8] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for a
Planet: The Google Cluster Architecture. Micro, 23(2):22–28,
2003.

[9] T. Beisel, T. Wiersema, C. Plessl, and A. Brinkmann. Co-
operative Multitasking for Heterogeneous Accelerators in the
Linux Completely Fair Scheduler. In IEEE International Con-
ference on Application-Specific Systems, Architectures and
Processors (ASAP), pages 223–226. IEEE, 2011.

[10] R. Bittner, E. Ruf, and A. Forin. Direct GPU/FPGA Commu-
nication via PCI Express. Cluster Computing, 17(2):339–348,
2014.

[11] J. Cabezas, L. Vilanova, I. Gelado, T. B. Jablin, N. Navarro,
and W.-m. Hwu. Automatic Execution of Single-GPU Com-
putations across Multiple GPUs. In Proceedings of the 23rd
international conference on Parallel architectures and compi-
lation, pages 467–468. ACM, 2014.

[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A Benchmark Suite for Het-
erogeneous Computing. In International Symposium on Work-
load Characterization (IISWC), pages 44–54. IEEE, 2009.

[13] Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax: QoS Aware-
ness and Increased Utilization of Non-Preemptive Accelera-
tors in Warehouse Scale Computers. In Proceedings of the
21th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 681–696, New York, NY, USA, 2016. ACM.

[14] C. Delimitrou and C. Kozyrakis. iBench: Quantifying Inter-
ference for Datacenter Applications. In International Sym-
posium on Workload Characterization (IISWC), pages 23–33.
IEEE, 2013.

[15] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. ACM SIGARCH
Computer Architecture News, 41(1):77–88, 2013.

[16] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient
and QoS-aware Cluster Management. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 127–144, New York, NY, USA, 2014. ACM.

[17] G. Elliott, B. C. Ward, J. H. Anderson, et al. GPUSync: A
Framework for Real-time GPU Management. In the 34th
Real-Time Systems Symposium (RTSS), pages 33–44. IEEE,
2013.

[18] G. A. Elliott and J. H. Anderson. Globally Scheduled Real-
time Multiprocessor Systems with GPUs. Real-Time Systems,
48(1):34–74, 2012.

[19] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li,
R. Dreslinski, T. Mudge, J. Mars, and L. Tang. DjiNN and
Tonic: DNN as a Service and Its Implications for Future Ware-
house Scale Computers. In Proceedings of the 42nd Annual
International Symposium on Computer Architecture (ISCA),
pages 27–40, New York, NY, USA, 2015. ACM.

[20] J. Hauswald, M. A. Laurenzano, Y. Zhang, C. Li, A. Rovinski,
A. Khurana, R. Dreslinski, T. Mudge, V. Petrucci, L. Tang,
and J. Mars. Sirius: An Open End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse
Scale Computers. In Proceedings of the 20th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 223–238,
New York, NY, USA, 2015. ACM.

[21] S. Hong and H. Kim. An Analytical Model for a GPU Ar-
chitecture with Memory-level and Thread-level Parallelism
Awareness. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA), pages 152–
163, New York, NY, USA, 2009. ACM.

[22] S. Hong and H. Kim. An Integrated GPU Power and Per-
formance Model. In Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages
280–289, New York, NY, USA, 2010. ACM.

[23] N. Jones. The Learning Machines, 2014.
[24] W. Joo and D. Shin. Resource-Constrained Spatial Multi-

tasking for Embedded GPU. In International Conference on
Consumer Electronics (ICCE), pages 339–340. IEEE, 2014.

[25] H. Kasture and D. Sanchez. Ubik: Efficient Cache Sharing
with Strict QoS for Latency-critical Workloads. In Proceed-
ings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 729–742, New York, NY, USA, 2014. ACM.

[26] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
TimeGraph: GPU Scheduling for Real-time Multi-tasking En-
vironments. In USENIX Annual Technical Conference (ATC),
pages 17–30, 2011.

[27] D. Kirk et al. NVIDIA CUDA Software and GPU Parallel
Computing Architecture. In ISMM, volume 7, pages 103–104,
2007.

[28] M. A. Laurenzano, Y. Zhang, L. Tang, and J. Mars. Protean
code: Achieving Near-free Online Code Transformations for
Warehouse Scale Computers. In Proceedings of the 47th An-

30

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/cuda/profiler-users-guide
http://docs.nvidia.com/cuda/profiler-users-guide

nual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 558–570. IEEE, 2014.

[29] H. Lee, A. Faruque, and M. Abdullah. GPU-EvR: Run-time
Event-based Real-time Scheduling Framework on GPGPU
Platform. In Design, Automation and Test in Europe Con-
ference and Exhibition (DATE), pages 1–6. IEEE, 2014.

[30] S.-Y. Lee, A. Arunkumar, and C.-J. Wu. CAWA: Coordinated
Warp Scheduling and Cache Prioritization for Critical Warp
Acceleration of GPGPU Workloads. In Proceedings of the
42nd Annual International Symposium on Computer Archi-
tecture (ISCA), pages 515–527. ACM, 2015.

[31] J. Leverich and C. Kozyrakis. Reconciling High Server Uti-
lization and Sub-millisecond Quality-of-Service. In Proceed-
ings of the 9th European Conference on Computer Systems,
page 4. ACM, 2014.

[32] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: Improving Resource Efficiency at
Scale. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture (ISCA), pages 450–462.
ACM, 2015.

[33] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-Up: Increasing Utilization in Modern Warehouse
Scale Computers via Sensible Co-locations. In Proceedings
of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 248–259, New York, NY,
USA, 2011. ACM.

[34] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Elim-
inating Server Idle Power. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 205–216, New
York, NY, USA, 2009. ACM.

[35] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair
Queuing Memory Systems. In the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), pages
208–222. IEEE, 2006.

[36] C. Nvidia. Compute Unified Device Architecture Program-
ming Guide. 2007.

[37] C. NVIDIA. GPU Occupancy Calculator. CUDA SDK, 2010.
[38] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan. Improving

GPGPU Concurrency with Elastic Kernels. In Proceedings of
the 18th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 407–418, New York, NY, USA, 2013. ACM.

[39] J. J. K. Park, Y. Park, and S. Mahlke. Chimera: Collaborative
Preemption for Multitasking on a Shared GPU. In Proceed-
ings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 593–606. ACM, 2015.

[40] V. Petrucci, M. Laurenzano, J. Doherty, Y. Zhang, D. Mosse,
J. Mars, L. Tang, et al. Octopus-Man: QoS-Driven Task Man-
agement for Heterogeneous Multicores in Warehouse-Scale
Computers. In the 21st International Symposium on High
Performance Computer Architecture (HPCA), pages 246–258.
IEEE, 2015.

[41] R. Phull, C.-H. Li, K. Rao, H. Cadambi, and S. Chakrad-
har. Interference-Driven Resource Management for GPU-
based Heterogeneous Clusters. In Proceedings of the 21st

international symposium on High-Performance Parallel and
Distributed Computing (HPDC), pages 109–120. ACM, 2012.

[42] B. Pichai, L. Hsu, and A. Bhattacharjee. Address Translation
for Throughput-Oriented Accelerators. Micro, IEEE, 35(3):
102–113, May 2015.

[43] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray, et al. A Reconfigurable Fabric for Accelerat-
ing Large-scale Datacenter Services. In the 41st International
Symposium on Computer Architecture (ISCA), pages 13–24.
IEEE, 2014.

[44] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-
Aware Warp Scheduling. In Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 99–110. ACM, 2013.

[45] K. Sajjapongse, X. Wang, and M. Becchi. A Preemption-
based Runtime to Efficiently Schedule Multi-process Applica-
tions on Heterogeneous Clusters with GPUs. In Proceedings
of the 22nd international symposium on High-performance
Parallel and Distributed Computing (HPDC), pages 179–190.
ACM, 2013.

[46] L. Tang, J. Mars, W. Wang, T. Dey, and M. L. Soffa. Re-
QoS: Reactive Static/Dynamic Compilation for QoS in Ware-
house Scale Computers. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 89–100,
New York, NY, USA, 2013. ACM.

[47] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick,
R. Ausavarungnirun, C. Das, M. Kandemir, T. C. Mowry, and
O. Mutlu. A Case for Core-assisted Bottleneck Accelera-
tion in GPUs: Enabling Flexible Data Compression with As-
sist Warps. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (ISCA), pages 41–53.
ACM, 2015.

[48] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and
M. Guo. Simultaneous Multikernel GPU: Multi-tasking
Throughput Processors via Fine-Grained Sharing. In the 22th
International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 358–369. IEEE, 2016.

[49] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, and
D. Chiou. GPGPU Performance and Power Estimation Us-
ing Machine Learning. In the 21st International Symposium
on High Performance Computer Architecture (HPCA), pages
564–576. IEEE, 2015.

[50] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-Flux:
Precise Online QoS Management for Increased Utilization
in Warehouse Scale Computers. In Proceedings of the 40th
Annual International Symposium on Computer Architecture
(ISCA), pages 607–618, New York, NY, USA, 2013. ACM.

[51] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complex-
ity Effective Memory Access Scheduling for Many-core Ac-
celerator Architectures. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 34–44. ACM, 2009.

[52] Y. Zhang and J. D. Owens. A Quantitative Performance Anal-
ysis Model for GPU Architectures. In Proceedings of the 17th

31

International Symposium on High Performance Computer Ar-
chitecture (HPCA), pages 382–393. IEEE, 2011.

[53] Y. Zhang, M. Laurenzano, J. Mars, and L. Tang. SMiTe: Pre-
cise QoS Prediction on Real System SMT Processors to Im-
prove Utilization in Warehouse Scale Computers. In Proceed-
ings of the 47th Annual International Symposium on Microar-
chitecture (MICRO), pages 406–418, New York, NY, USA,
2014. ACM.

[54] J. Zhong and B. He. Kernelet: High-throughput GPU Ker-
nel Executions with Dynamic Slicing and Scheduling. IEEE
Transactions on Parallel and Distributed Systems, 25(6):
1522–1532, 2014.

32

	Introduction
	Real System Investigation
	Experimental Setup
	Task Execution Interference
	Data Transfer Interference
	Challenges for Precise QoS Prediction on Non-Preemptive Accelerators

	Prophet Methodology
	Design Principals of Prophet
	Prophet Overview

	Task Execution Model
	Background of Task Execution on Accelerators
	Sequential Task Execution Model
	Concurrent Task Execution Model
	Calculating Task Start Time:
	Calculating Task Complete Time:

	Data Transfer Model
	Background of Data Transfer Tasks
	Modeling Data Transfer over PCIe
	Scenario 1: Share PCIe Bandwidth
	Scenario 2: Queued by BE Tasks
	Scenario 3: Preempt PCIe Bandwidth

	Putting It All Together
	Evaluation
	Experimental Setup
	Performance Interference Prediction
	Prediction for Compute-Intensive Co-locations
	Prediction for PCIe-Intensive Co-locations
	Prediction for Low Contention Co-locations
	Prediction Accuracy for Tail Latency

	Improving Utilization and Maintaining QoS
	Scale-out Study

	Related Work
	Conclusion

