
Compilation Accelerator on Silicon

Venkateswaran Nagarajan*, Vinesh Srinivasan‡, Ramsrivatsa Kannan‡, Prashanth Thinakaran‡, Rajagopal Hariharan‡,
Bharanidharan Vasudevan‡, Nachiappan Chidambaram Nachiappan†, Karthikeyan Palavedu Saravanan†, Aswin Sridharan†,

Vigneshwaran Sankaran†, Vignesh Adhinarayanan†, V.S.Vignesh†and Ravindhiran Mukundrajan†
*Director, ‡WARFT Research Trainee, †Previously affiliated with WARFT

Waran Research Foundation [WARFT], India

Email: waran@warftindia.org

Abstract—Current day processors utilize a complex and finely
tuned system software to map applications across their cores
and extract optimal performance. However with increasing core
counts and the rise of heterogeneity among cores, tremendous
stress will be exerted on the software stack leading to bottlenecks
and underutilization of resources. We propose an architecture
for a Compilation Accelerator on Silicon (CAS) coupled with a
hardware instruction scheduler to tackle the complexity involved
in analyzing dependencies among instructions dynamically, ac-
celerate machine code generation and obtain optimum resource
utilization across the cores by effective and efficient scheduling.
The CAS is realized as a two-level hierarchical subsystem em-
ploying the Primary Compiler on Silicon (PCOS) and Secondary
Compiler on Silicon (SCOS) with the hardware instruction
scheduler as an integral part of it. A comparative analysis with
the conventional GCC compiler is presented for a real world
brain modeling application and higher instruction generation
rates along with improved scheduling efficiency is observed
resulting in a corresponding increase in resource utilization.

Keywords-Heterogeneous Multi-Cores; Hardware Compiler;
Hardware Scheduler;

I. INTRODUCTION

The need for micro-architectural energy efficiency along

with increased performance has spurred the growth of het-

erogeneous multi-core architectures [1] [2]. Parallelism in all

forms have been embraced in an attempt to increase the

throughput of the system. While plenty of efforts are being

dedicated to accelerate the execution of various applications,

an equivalent effort to speed up code generation and schedul-

ing has not been observed so far. Currently, a complex and

finely tuned system software is used to map applications

across the different cores based on their computational re-

quirements [2] and thus, effectively exploit the potential of the

underlying silicon. However, due to deployment of hundreds

of specialized functional units across many cores, there is a

need for quicker dependency resolution and faster instruction

issue. This will place tremendous stress on the system software

encompassing the likes of compiler and instruction scheduler.

To address this, the idea of a single instruction set, and thereby

an opportunity to provide a scalable compiler across cores has

previously been proposed in [3]. However, with large number

of cores and disparate functional units inside each core, the

instruction issue rate of a software compiler will not suffice.
In an attempt to address this bottleneck, an architecture

for a Compilation Accelerator on Silicon (CAS) is proposed.

The CAS is a hardware accelerator that will co-exist with the

existing software ecosystem and will assist the system software

in:

• tackling the complexity of issuing instructions in parallel

• increasing the instruction issue rate of dependent as well

as independent instructions

• performing parallel mapping of multiple instructions be-

longing to different applications within and across cores.

The CAS performs the arduous task of analyzing the de-

pendencies among assembly level instructions and generating

machine level instructions. It can be realized as a two-level

hierarchical architecture, as shown in Figure 1.

����

����

���� ���� ����

�	
������	

�����������
 �����������

��������

��

�	
������	

��

��������

�� ��

��������

�� ��

��������
��	���������
�
���	��	�����5

Fig. 1. Hierarchical representation of CAS

To further complement the CAS, we also propose the design

of a hardware scheduler that will help improve resource

utilization. The scheduling of instructions also plays a pivotal

role in keeping the vast underlying resources busy and thereby

increase throughput. The hardware scheduler is closely inte-

grated with the CAS. The instructions are scheduled based on

heuristics that will improve resource utilization and thus effec-

tively exploit the potential of the architecture. The hardware

scheduler is envisioned as a micro-programmed engine, which

provides the user with the opportunity to program heuristics

suitable to his application.
This paper focuses on the functional architecture of the code

generator and scheduler. The detailed RTL level description

of each functional block utilized in the architecture has been

discussed separately in [4]. The CAS-hardware scheduler

2012 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4767-1/12 $26.00 © 2012 IEEE

DOI 10.1109/ISVLSI.2012.76

267

subsystem has been verified and validated by means of Verilog

simulations. A detailed comparison of the time taken to com-

pile a real-world brain modeling application by a conventional

GCC compiler and Compilation Accelerator on Silicon (CAS)

is presented in this paper. Section II discusses the architecture

of the Dependency Analyzer. The hardware scheduler and its

heuristics are elaborated in Section III. The machine code

generator is presented in Section IV. We discuss the obtained

results in Section V and conclude in Section VI.

II. DEPENDENCY ANALYZER

Current day many core processors are designed to support

out-of-order execution [5] to make the underlying hardware

utilize the stall time for compute instructions. For such a

scenario, ideally there should be an efficient technique for

ordering instructions in the instruction queue, as well as,

to differentiate among those instructions whose dependencies

were resolved and those whose dependencies were not. This

analysis of dependency among instructions and its associated

data can be clearly understood by the following example.

Consider an example with four different instructions: I1, I2,

I3, I4. Let I3 depend on I1 and I2, while I4 depends on I2

only. Assume the current timestamp to be 126. Let us assume

that I1 and I2 have been scheduled to its respective functional

units execution at 121st and 123rd timestamps respectively.

Calculating the time at which I3 can be scheduled to its

respective functional unit:

Time to execute I1 = Delay of multiplier unit = x
Time to execute I2 = Delay of comparator unit = y

Time at which I3 can be scheduled to its functional unit
= max(126, 121 + x, 123 + y)

Keeping these functionalities in mind, we evolve the ar-

chitecture of dependency analyzer which is depicted in Fig-

ure 2. The dependencies across instructions is stored in the

instruction detail table along with instruction IDs marked as

I1,I2, I3 and their sources are searched (Search unit 1.1 and

Search Unit 1.2). Instruction detail table is discussed further in

Section 4. The search unit employs graph traversal technique

and their cell based pipelined architecture is given [6]. Apart

from that, to set timestamp of the child instruction, latency

of the underlying functional units which executes the parent

instructions is needed and is stored in a separate table (not

shown in Figure 2). For this purpose, two search units (Search

unit 2.1 and Search Unit 2.2) are employed. More details on

the tables are discussed in Section 4.

At the end of this operation, the output obtained will be

the time stamp at which the parent instructions have been

scheduled to their underlying functional units. This obtained

timestamp has to be added to the latency of the respective

functional units so as to obtain the final timestamp by which

the instructions would have completed its execution. Suitable

adder units [6] are provided for this operation. At the end of

the execution, the final timestamps obtained from Search unit

1.1, Search unit 1.2, and the current timestamp are compared

and the maximum among the three values (max finder Unit)

����

��

��	
��

�����
��	
��

�����

������

�����

������

�����

����

�����

������

�	
���

������

�	
����

������

�	
����
������

�	
�����

����� �����

�����
	���

���

�����

����	�

�����

����	�

��

����

��

����

��

�����
��

�����

��������	
�����	������

��������	 � ��������	 ��

��� ! �
"� ���"�#$���% $���� &�$��	��� �� ! ��	��
�	����	
������� ��	�
	'����
	 �����
�	

���
��������� ! � � ��	������������	 �����
�	(��#)��"��� ! ���	����&����������������	�
����	 �����
�	

����
����*�������
	�������
"�����"����	�������������������������	 �����
�	�

���
��������� ! � � �������������
	��������
�	�������� ��
�����+
������������ ��	�
	'����

����
	������������������

�,

�

�� �- �-�

��
������

��
����������

������

��
����������

Fig. 2. Functional Architecture of the Dependency analyzer

[6] should be the timestamp at which the current instruction

should be scheduled.

Similarly, the dependencies are analyzed for each instruc-

tion. The architecture of the dependency analyzer is designed

to give priority to independent instructions and thereby in-

crease resource utilization. The dependency analyzer analyzes

the entire set of instructions and resolves the dependencies

across them. The scheduler whose architecture is about to be

seen in the next section, schedules instructions which have

either no dependencies or those instructions whose dependen-

cies are already resolved. Hence, the information provided

by the dependency analyzer is vital for the scheduler for

achieving better performance and thereby increased resource

utilization. Dependency analyzer proposed includes exclusive

hardware graph traversal units for analyzing dependencies

across instructions unlike in any previous works [7].

III. HARDWARE SCHEDULER

Conventional software scheduler uses scheduling algorithms

such as round robin or pre-emptive scheduling. But, in case

of a heterogeneous multicore processing environment, the

scheduler should govern instructions of multiple applications

that have to be scheduled to multiple cores effectively. In

such a case, the software scheduler becomes an overhead in

scheduling the large number of instructions at a rate catering

to the needs of such instruction hungry processors. Hence,

for high performance heterogeneous multicore processors, a

hardware based scheduler becomes inevitable.

The proposed hardware scheduler, shown in Figure 3, is

tightly coupled with both the levels of hierarchical CAS. It

interacts with the CAS and utilizes its tables to effectively

map the generated instructions. The hardware scheduler is

also developed using higher level functional units called as

Algorithm Level Functional Units (ALFUs) which results in

its improved performance. The Algorithm Level Functional

Unit is a superset of scalar units and higher level functional

units [8].

The instructions generated by the code generator are sched-

uled to the underlying FUs by the hardware scheduler. The

268

FU Usage

Calculation

Probability

for Usage

Calculation

Execution

Track Unit

Instruction

Execution

Counter

Idle Clock

Cycle

Counter

FU Fetch

Unit

Inst Priority

Assign Logic

Source

Instruction Fetch Unit

FU with

Highest

Probability

Comparator

Instruction Output Buffer

FU Status Table

FU ID Inst.

Exec

Usage

Factor
-- --

Inst in

Pipe

FU ID Probability

For Usage

MatAdd2 80

MatAdd3 62
-

-

-

-

MatMul1 74
-

-

-

-

-

-

-

-

{

Scheduler History Table

Inst

ID
TSPApp

Priority

Inst

Priority
- -

I3 I2 I1 H 100 ******

Source.

Inst 1
Source

Inst 2

Search

Unit

Inst -- --

ID

FU

ID

I2 MatAdd1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

MatAdd2 2 25

Inst

ID

Inst

Priority
FU ID--- -- -- --

I3 I2 I1 ****** MatAdd2

FU Utilization Table

Instruction Detail Table

Instruction Buffer Table

ority

1 A
Instr

1 B

3 A 3 B

2 A

e

2 B

4 B1 4 A

5

6

Source

Inst 1

Source

Inst 2

Increment

probability

Factor

Instruction

Fetch Unit

Priority

Register

Priority

Decrement

Comparator

FU ID

Fetch

Fig. 3. Architecture of Hardware Scheduler

hardware scheduler takes into account the numerous param-

eters that are critical for the performance of a processor.

For example, the hardware scheduler not only considers an

application’s priority for scheduling instructions, but also con-

siders the optimal resource utilization of the functional units

and load imbalance. The hardware scheduler is undoubtedly

the nucleus of the code generator concerned with the overall

performance of the processor. Some of the parameters taken

into consideration by the hardware scheduler are functional

unit usage, number of output buffer stages filled, number of

instructions pipelined in functional unit, source instruction

dependencies and application priority. The various tables its

sizes and the devices utilized in hardware scheduler are shown

in Table 1. The scheduler architecture is developed using

simple heuristics that impacts scheduling of instructions under

various circumstances as listed below:

A. Resource Utilization based Scheduling

Uneven distribution of load across Functional Units (FU)

causes over utilization of some FUs. This creates thermal hot

spots which could lead to breakdown of processors. Therefore,

load balancing across FUs is necessary. To achieve this, we

monitor the execution status of each FU and compute its usage

as follows:

FU Usage = N− Cidle × Latency

100
(1)

where N denotes number of instructions executed, Number

of clock cycles FU remain idle denoted by Cidle, Latency

denotes latency of particular FU

The components in the architecture responsible for this

computation are: (i) execution track unit [1B][Figure 3], which

uses a set of HW counters and (ii) FU usage calculator unit

[2B][Figure 3], composed of subtractor and divider ALFUs.

TABLE I
TABLE SIZES AND DEVICE COUNT OF THE SCHEDULER

Table Name Sizes ALFU Device Count

Library Address Table 4 KB CLA 446

Library Detail Table 4 KB Multiplier 2000

Library Status Table 4 KB NRD 1792

Sub-Library Address Table 100 Bytes Comparator 688

Instruction Status Table 16 KB MatMul 19790

Instruction Detail Table 142 KB MOA 4154

Instruction Buffer Table 16 KB Inner Product 30934

FU Status Table 0.5 KB Graph Traversal 6672

Scheduler History Table 166 KB Sorter 11008

FU Utilization Table 192 Bytes Max/Min Finder 3388

Based on FU usage, probability factor for each FU is cal-

culated as shown below. Here, probability factor is a term

that indicates the probability that a given FU is chosen for

scheduling.

PF =
100− FU Usage

50
+

Nmax-Ncurrent

25
− TB − TF

25
(2)

where PF denotes Probablity factor, Nmax is maximum

number of instructions in FU pipe, Ncurrent denotes number

of current instruction in pipe, TB and TF represents total and

filled output buffer stages respectively.

The probability factor also takes into consideration the

number of instructions currently in the FU pipe and number

of o/p buffer stages filled. In the architecture, ’probability for

usage calculator’ unit [3 B][Figure 3], composed of multiplier

and multiple operand adder ALFU, computes this term. This

unit gets its input from the FU status table. Also, the scheduler

maps a child instruction to same FU as the parent instruction to

reduce communication overhead. For this purpose, Scheduler

history table stores the history of each instruction. An instruc-

tion fetch unit, which uses an array of comparators, fetches

information of parent instructions from this table.

B. Pipeline Stall based Scheduling

Whenever pipeline stall occurs in a Functional Unit, the

execution track unit [1B][Figure 3] keeps track of that Func-

tional Unit’s idle clock cycles. Depending on the number of

instructions executed and idle clocks, usage of a particular FU

is calculated. The FU which was idle for more clock cycles

due to pipeline stalls is given a higher priority for execution

of subsequent instructions.

C. Application Priority based Scheduling

When multiple applications gets executed in the same core

simultaneously [9], then the instructions of a higher priority

application needs to be executed first. However, in this case,

it is also important to ensure that instructions of a low priority

application, which may be waiting in the schedule queue for a

comparatively longer time, are eventually scheduled. A logic,

that considers both application priority and assigned time

stamp of instruction, has been developed as shown below:

269

Instpriority = Apppriority + (TScurrent − TSassigned) (3)

where Instpriority and Appprioritydenotes Instruction and

Application priority.TScurrent and TSassigned are current and

assigned time stamps respectively.

Thus, the instruction having an older time stamp and a

higher instruction priority increases its chances of getting

scheduled. The priority of an instruction’s application and its

assigned time stamp are fetched from instruction detail table.

The instruction priority assign logic unit [1A, 2A] [Figure 3],

made of adder and subtractor units [8], takes this input and

assigns the priority for each instruction.

D. FU assigning Logic

Finally the probability factor computed based on parent

instruction’s history [3A,4A] [Figure 3] and FU usage[4B]

[Figure 3] is compared and the FU with the higher probability

factor is selected using a comparator ALFU. The instruction

is finally mapped onto the selected FU. Existing hardware

schedulers [10][11] lacks heuristics for optimal resource uti-

lization of functional units. Though [11] does load balancing,

it is achieved by naive process such as task stealing and has

no specific units to track the instruction execution unlike our

hardware scheduler.

IV. MACHINE CODE GENERATOR

To tackle this increasing complexity of future generation

processing cores, the CAS is designed so as to generate and

issue instructions by which the architectural potential of the

underlying units can be exploited efficiently. The compiling

framework that has been proposed in this paper is hierarchical

in order to distribute the complexity among the levels. Thus, a

two level hierarchical architecture has been framed. They are

Primary Compiler-on-Silicon PCOS and Secondary compiler-

on-silicon SCOS.

The hierarchical CAS is also capable of performing dynamic

compilation, run time dependency analysis, code scheduling

and optimization decisions using the architecture of depen-

dency analyzer shown in the previous section because static

compilation suffers when it comes to non-stationary applica-

tions and runtime decision making systems.

The applications after going through the naive and initial

stages of compilation like lexical analysis, syntax analysis

and semantics at the host level, enter as inputs in the form

of libraries to the first level of hierarchy- CAS. The libraries

which are received as packets of instructions are broken down

into sub-libraries at the PCOS and are scheduled to the second

stage of hierarchy- SCOS. A PCOS may schedule and be in-

charge of a number of SCOS(s). Out of the various SCOS

present within the compiler, each may be employed to one

or more cores within the architecture. SCOS assembles the

sub-libraries, analysis the dependencies and issues ISA control

words to trigger many Functional Units (FUs) in parallel.

Since the ISA formation and scheduling rate depends on the

Interface with

Host / PCOS

From Host / PCOS

Input : Library /Sub-Library Header Address Memory

Controller

Library /

Sub-Library

Memory Space

Dependency

Analyzer
Sub Library /

Instruction

Fetch Unit

Sub Library / Instruction Word Formation &

Sub Library/ Instruction Scheduler

Output

Buffer

Output

Buffer

Output

Buffer
 - - - - - - - -

1

2

3

6(a)

7

8

10

14

16 17
18 (n)

6(b) 6(c)

4

5

9 11

15

18(i) 18(ii)

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Library header /

Instruction

Detail Table

Library /

Instruction

Address Table

Library /

Sub-Library

Status Table

Operand

Table D
A

TA
 F

LO
W

 S
TA

G
E

S

Assembler

From Host / PCOS

 Input Data

13

Functional

Unit Status

Table

Library

Fetch Unit

Libraries Input

Note 1: The numbers correspond to the sequence of operations resulting in Instruction Words

Note 2: The entities in the dotted box correspond to the architecture of SCOS only.

Note 3: The entities in the gray box correspond to the architecture of PCOS only.

Note 4: The other entities are both common to PCOS and SCOS, when employed for PCOS

they act on Sub-Libraries while for SCOS, they act on instructions.

Fig. 4. Generic Architecture for PCOS and SCOS

hardware scheduler, it accounts directly to the resource uti-

lization of the architecture and thereby performance acquired.

All tables utilized by the CAS and its respective table sizes

are shown in Figure 4 and Table 1 respectively.

A. Primary Compiler-on-Silicon PCOS

Owing to the similarities in the architecture of PCOS and

SCOS Figure 4 shows the generic architecture of both levels

of PCOS. Each unit of the CAS architecture is responsible for

a specific set of operations which is aided by the numerous

tables CAS maintains. The Library Header input, sent from the

host is received at the Library Header Buffer. The data from

LIB Header is then used to fill the various tables in CAS. All

available data are filled in the tables employed. These tables

play an important role in maintaining the execution status and

generating Sub-LIB words. LIB Address Table gets the address

of the libraries from the SRAM Controller.

When a LIB is scheduled to CAS, its corresponding instruc-

tion and data packets are stored at the core’s local SRAM

banks. The addresses at which these are stored is intimated

by the local SRAM Controller to the LIB Address Table.

Similarly, Sub-LIB dependency in the instruction packet is also

read and sent by the local SRAM Controller to LIB Header

Detail Table for dependency analysis in the later stages.

Once the tables are filled, Dependency Analyzer of PCOS

reads the LIB Header Detail Table to resolve the dependencies

across the Sub LIBs present in a LIB and assigns timestamp.

This timestamp value is maintained in a Time Stamp Register

(TSR) present within Dependency Analyzer. This timestamp

assigned, marks the scheduling and execution sequence of the

Sub-LIBs. After timestamps are assigned, Sub-LIB Selection

Logic selects an appropriate Sub-LIB based on assigned

timestamp value from the LIB Header Detail Table and sends

it to the scheduler.

270

PCOS Tables

SCOS Tables

Library Id Sub-Library Id
Sub Library

Instruction Address
Sub Library

Data Address

Library Address Table

Library Detail Table

Library Id Sub-Library Id
No. Of

Dependencies
Dep.

Sub-Library ID

Computational

Requirement Priority
Time

Stamp

Library Status Table

Library

Id

Total No. Of

Sub-Libraries

No. Of Sub-

Libraries Executed

Sub-

Library ID

Execution Status

of Sub-Library

Execution Status

of Library

Time

Stamp

Sub - Library Address Table

Sub –

Library Id

PCOS assigned

timestamp
Sub Library

Instruction Address

Sub Library

Data Address

Library

Id

Instruction

 Id

Type of

Instruction

Sou-

rce 1

Sou-

rce 2

Destin-

ation 1

Assigned

Time Stamp

Destin-

ation 2

Application

Priority

Instruction

Priority

Instruction Detail Table

Library

Id

Instruc

tion Id

Type of

Instruction

Sou-

rce 1

Sou-

rce 2

Destin-

ation 1

Execution

Status

Destin-

ation 2

Instruction

Priority
Assigned

 FU ID

Scheduler History Table and Instruction Status Table

No. Of Inst

present

No. Of Inst

executed

Instruction

 Id

Type of

Instruction

Sou-

rce 1

Sou-

rce 2

Destin-

ation 1

Assigned

Time Stamp

Destin-

ation 2

Application

Priority

Instruction

Priority
 FU ID

Instruction Buffer Table

Functional Unit Status Table

FU

Id
Status

Clock

Assigned

No of Inst

Executed

Pipelined

Delay
Pred

Status

No of Inst

in Pipe

Usage

Factor

Functional Unit Utilization Table

FU

Id
Probability

Factor

Fig. 5. Fields in PCOS and SCOS tables

Core

ID

Instruction

ID

Source

Inst 1

Source

Inst 2

Destination

1

Destination

2

App

Priority

Inst

Priority

Assigned

Time stamp
ALFU ID

Fig. 6. Format of the machine level code word generated by the code
generator. The word length of each field varies depending on the sizes of
the tables in the CAS

Scheduler within PCOS is responsible for scheduling the

Sub-LIB Header formats to the PCOSs. It is the heart of PCOS

as it is responsible for the effecting task level parallelism

by allocating the Sub LIBs to the multiple SCOSs under it.

Scheduler uses the Sub-LIB status table to check if a Sub

LIB has already been scheduled for execution. Except the

status field, all other details are filled by the data available

from LIB Header Buffer. The status of executing Sub-LIBs is

communicated to it by the SCOS which execute those Sub-

LIBs. Scheduling is based on the heuristics implemented as a

part of the system libraries. When it has been decided as to

which and where the Sub-LIB has to be scheduled, the Sub-

LIB Header Format is assembled using LIB Address Table and

sent to their respective SCOS Input Buffers.

B. Secondary Compiler on Silicon

The Secondary Compiler-On-Silicon (SCOS) is mesh con-

nected and operates in a parallel fashion to extract parallelism

within the architecture. Thus, various SCOS functioning in-

dependently enable concurrent generation of instructions and

their scheduling. While the PCOS maps application libraries

to different SCOS, the SCOS executes the various general

purpose instructions (within the sub-libraries) independent of

each other by resolving their dependencies. The mesh topology

of SCOS facilitates sharing the status of the different SCOSs.

The architecture of SCOS is very similar in its functional

working to the PCOS, however with the exception that the

SCOS works on instructions rather than Sub-Libraries. A

simple addition in the architecture of SCOS compared to that

Fig. 7. Verilog Simulation of Hardware Scheduler

0

100

200

300

400

500

600

700

50000 100000 150000

C
o

m
p

il
e

r-
O

n
-S

il
ic

o
n

O
u

tp
u

t
R

a
te

Clock

Fig. 8. CAS output rate for SPEC benchmark ASTAR

�
�
�
�
��
�
	

�
�

��
��
�
�
�
�
��
�
�
�
�
��

����

����

����

���

���

���

���

�

��������	
�	������
����� ����

������ ������ ������ ������ ������ ������ ������

����

Fig. 9. CAS output rate for SPEC benchmark GCC

of PCOS is the inclusion of functional unit status table which

helps the SCOS scheduler to distribute load evenly and to

check if a particular functional unit is available for scheduling.

Adding to that, there is an assembler which assembles the

assembly level instructions (read form the Instruction Packets)

and Operand Table with the address of operands (from the data

packet address location). A table that is solely dedicated for

this purpose is called instruction buffer table. Instructions to

be scheduled at a particular time stamp are grouped along

with their data addresses obtained from assembler to form an

Instruction Word Figure 6, which is then sent to the cores.

V. RESULTS AND ANANYSIS

This section explains the experimental setup and simulation

framework of the proposed CAS. The CAS simulator [12]

is a clock-accurate simulator used to implement, verify and

validate the working of the proposed concept. The CAS is

implemented as sub-simulator into the CUBEMACH simulator

[12] which simulates heterogeneous functional units. The

CUBEMACH simulator is set up with initial functional unit

parameters consisting of various Algorithm Level Functional

Units [8] (MatMul, MatAdd etc) and Scalars (Add, Sub,

Mul, Div). This information is used to setup tables (such as

Functional Unit Status Table) within CAS. Algorithms similar

to ones in SPEC Benchmarks were used to test and verify the

working of the CAS. We write micro-kernels that we believe

are close representatives of the actual SPEC benchmarks and

use the same names as the SPEC benchmarks for convenience.

271

664

473

352

407

573

532

0

100

200

300

400

500

600

700

Astar Bzip2 Gcc Mcf Omnetpp H264ref

N
u

m
b

e
r

o
f

in
st

ru
ct

io
n

s

sc
h

e
d

u
le

d
 p

e
r

cl
o

ck

Benchmarks

Fig. 10. Number of Instructions scheduled per clock for different Equivalent
SPEC benchmarks

�

���

�

���

��

�
 � � � � � � 	 �� �� �
 �� �� �� �� �� �� �	
�

����������	��
�������������
�	�������������

�
�
�
�
�
�
��
�
�

��
��
�

��

���

Fig. 11. Comparison between the time taken compile a multi million
neuronal application in a conventional compiler and Compilation Accelerator
on Silicon.

In Figure 8 and Figure 9, benchmarks are run sequentially

in the simulator and corresponding scheduler output rate is

recorded. The zoomed-in portion of the diagram shows the

output rate for the benchmark GCC (Figure 9) which is a high

instruction dependent application, whereas ASTAR (Figure 8)

has large amounts of independent instructions, resulting in

a constant output rate. The graph shows the efficiency of

the compiler-scheduler in mimicking the characteristics of the

algorithms and their dependencies.

Figure 10 shows the bar chart for the average number of

instructions scheduled per clock corresponding to the type

of benchmark application executed. As seen in the figure,

for SPEC benchmarks like ASTAR, the average number of

instructions scheduled is maximum compared to other bench-

mark sets. This is due the fact that ASTAR has large number

of independent instructions to be scheduled every clock cycle.

Graph based benchmark set of Bzip2 have low independent

operations. Thus, interdependency across instructions leave

CAS to schedule only limited number of instructions to

functional units. Specific applications like GCC, MCF which

are used to form high data dependent applications, have lesser

instructions scheduled than any benchmark executed.

Figure 11 depicts the quantitative comparison between CAS

and GCC with respect to compilation time of a multi million

neuronal inter-connectivity prediction based application [13]

[14]. The equivalent Benchmark Simulator [12] (a synthatic

workload) of the application is run separately in a GCC

compiler and CAS. The time taken for syntax and semantic

analysis of the GCC compiler is identified and is eliminated

from the total compilation time such that only the time

taken for code generation is considered for comparison. It is

evident from the graph that there is a marginal difference in

compilation time for the same application compiled with two

different compilers. This marginal difference plays a major

role when compared in terms of number of clock cycles.

Hence, for CAS the number of clock cycles taken to execute

a particular application would be significantly lower when

compared to GCC.

VI. CONCLUSION

This paper proposes CAS, Compilation Accelerator on

Silicon, a novel approach towards the design of a hardware

compilation accelerator with an integrated scheduler. The

CAS’s hierarchical structure enables easy customization, and

provides a dynamic and powerful architecture aware schedul-

ing heuristics. Our evaluations show the potential benefits that

can be obtained through the use of the accelerator. We believe

our approach in using hardware accelerators for compilation

and scheduling is essential for mitigating the software bottle-

neck involved in scheduling for complex heterogeneous archi-

tectures.

REFERENCES

[1] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in HPCA, 2011, pp.
503–514.

[2] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-isa heterogeneous multi-core architectures: The potential for
processor power reduction,” in MICRO, 2003, pp. 81–92.

[3] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in ISCA, 2004, pp. 64–75.

[4] WARFT, “Rtl details of compilation accelerator on silicon,”
http://www.warftindia.org/cas/cas.pdf, Jun. 2012.

[5] L. Villa, R. Espasa, and M. Valero, “A performance study of out-of-order
vector architectures and short registers,” in ICS, 1998, pp. 37–44.

[6] N. Venkateswaran et al., “Scoc ip cores for custom built supercomputing
nodes,” in ISVLSI, 2012.

[7] L. J. Carter, “Compiler and hardware predicated dependency analysis
and scheduling,” Ph.D. dissertation, University of California, San Diego,
2002.

[8] WARFT, “Alfu architectures and verilog simulations,”
http://www.warftindia.org/cas/alfu.pdf, Apr. 2012.

[9] N. Venkateswaran et al., “On the concept of simultaneous execution
of multiple applications on hierarchically based cluster and the silicon
operating system,” in IPDPS, 2008, pp. 1–8.

[10] P. Kuacharoen, M. Shalan, and V. J. Mooney, “A configurable hardware
scheduler for real-time systems,” in ERSA, 2003, pp. 95–101.

[11] S. Kumar, C. J. Hughes, and A. D. Nguyen, “Carbon: architectural
support for fine-grained parallelism on chip multiprocessors,” in ISCA,
2007, pp. 162–173.

[12] WARFT, “Cubemach design paradigm simulator,”
http://www.warftindia.org/CUBEMACH/CUBEMACH-2.2.tar.gz,
Jun. 2012.

[13] N. Venkateswaran et al., “Energetics based spike generation of a single
neuron: simulation results and analysis,” Frontiers in Neuroenergetics,
vol. 4, no. 00002, 2012.

[14] A. Mohan, “The mmini-dass simulator and its application to visual
pathway connectivity prediction,” Thesis submitted to Waran Research
Foundation, India, 2008.

272

