2013 IEEE Computer Society Annual Symposium on VLSI

Performance and Energy Efficient Cache System
Design : Simultaneous Execution of Multiple
Applications on Heterogeneous Cores

Venkateswaran Nagarajan*, Kartik Lakshminarasimhanf, Akash Sridhar}, Prashanth Thinakaran}, Rajagopal Hariharanf,

Vinesh Srinivasan{, Ram Srivatsa KannanZ
Aswin Sridharanf
*Director, Waran Research Foundation

IWARFT Research Trainee

Abstract—Future generation supercomputing clusters are en-
deavouring to achieve exascale performance without compromise
on energy efficiency. Executing multiple applications simultane-
ously without space time sharing in a heterogeneous multi core
environment brings out the utmost parallelism that exists within
the applications. This helps to attain peak performance and also
paves way for improved resource utilization. This necessitates
the need for an efficient and locality aware cache replacement
scheme to cater to the magnanimous data needs of underlying
functional units in case of a cache miss. Reduced cache miss
improves resource utilization and reduces data movement across
the core which in turn contributes to a high performance to
power ratio. This paper proposes a novel application aware cache
replacement policy in which data blocks are assigned weights
based on a set of application and data statuses. Our proposed
heuristics have shown an 8-11% improvement in cache hit when
compared against conventional cache replacement heuristics.

Keywords-Multiple Application Execution, Cache System De-
sign, Replacement Policy

I. INTRODUCTION

Even though computational speed (flops/second) is the
prime metric, cost due to power consumption is a major
worry, demanding the users to see performance to power ratio
(performance/watt). Cache system design is the prime metric
deciding both the performance and power. At a multiprocessor
environment, cache miss degrades the performance as the
cache miss penalty scales by a very higher factor across a
shared memory system when compared to general purpose
processors. This necessitates the need for efficient cache
replacement policies supporting the simultaneous execution
of multiple applications. In order to execute applications
simultaneous, major architectural changes as shown below are
necessary. Current cache replacement strategies do not support
such parallelism among applications.

1) Compilation Acceerator on Silicon (CAS): When the
number of cores in a heterogeneous multi-core environment is
increased in thousands, parallel issue of hundreds of instruc-
tions and their efficient scheduling becomes a bottleneck. This
is overcome by using Compilation Accelerator on Silicon, a
hierarchical hardware based compiler cum scheduler [1].

2) Algorithm Level Functional Unit (ALFU): Usage of
judicious combination of ALFUs and scalars give energy and

978-1-4799-1331-2/13/$31.00 ©2013 IEEE

performance efficient core architectures [2].

3) Algorithm Level Instruction Set Architecture (ALISA):
This is a superset of CISC and VLIW instruction. A single
ALISA instruction is equivalent to several ALU, vector and
VLIW instructions [2].

4) Simultaneous Execution of Multiple Applications
(SMAPP): 1t is well established that simultaneous execution
of multiple applications non space time sharing improves
resource utilization [2]. The architecture of ALFUs are
evolved in such a manner to support simultaneous multiple
application execution [2].

While research has been carried out in the above directions
with regard to cache system design, there has not been enough
stress on replacement policies and the associated performance-
energy relationship in the context of simultaneous execution
of multiple application non space time sharing. The Least
Recently Used (LRU) cache replacement policy [6] allocates
resources based on current need but does not perform re-
placement based on cache utility. This leads to substantial
reduction in performance in heterogeneous multi-core envi-
ronment. While various applications compete for the cache
lines in shared memory architecture, not only application based
cache partitioning are needed, but also application based cache
replacement policies are required for better cache performance.
While framing the replacement policies, a complex design
space exploration involving the application parameters is nec-
essary in order to improve the cache hit/miss ratio. Small
changes to replacement policies such as, adding tag number
to cache blocks [20] to determine the miss causing applica-
tion are not enough in improving performance. This paper
proposes replacement polices covering the entire application
characteristics. An energy efficient power model supporting
the replacement policies with low cost hardware circuitry is
also emphasized making the cache system design better over
the existing cache architecture.

The applications can be classified depending on the cache
access patterns. Some applications may frequently access the
L1 cache, requiring less data while accessing each time. Some
applications need huge chunk of data from cache with less
frequent access. The existing replacement policies such as
Not Recently Used [21], with re-reference interval prediction

200

mechanisms, predicts the future interval in which the data
packet is likely to be accessed, takes only the application
characteristics consideration. Depending on the applications
characteristics, bits are set to each data packet. However,
this classification and the above replacement methodology fail
in the following situations. There can be situations where a
common data packet may be the inputs to various applications.
A particular application requiring the data may be a LRU
application but the common data packet is essentially MRU
data packet as it is involved in various applications. This
paper proposes replacement policies which covers a wide
range of application characteristics as well as data packet
characteristics.

The focus of this paper is on investigating the replacement
policies and energy models to suit simultaneous execution
of multiple application non space time sharing. Section 2
proposes the cache organization and its associated heuristics
while section 3 describes cache controller and its associated
architecture. Section 4 deals with the associated energy model
which is followed by the results and analysis section

II. CACHE ORGANIZATION AND REPLACEMENT
STRATEGIES

All data which is being stored in the dynamic memory
are in the form of data packets, and these data packets are
clubbed together to be called a block of size equal to a single
cache line and the group of lines are termed cache set. For
mapping the data packets from DRAM to the cache employing
a combination of mapping strategies based on the cache size
at the respective levels as in the conventional system cache
design. For mapping the data packets from the L3 cache to
the L2/L.1 cache, the "weighted data packet strategy” is being
proposed.

It is noticed from figure 1 that the data packets associated
with multiple applications co-exists together on a single cache
line. Thus the application statistics is given a serious con-
sideration besides the instruction/data, to improve the cache
performance in simultaneous execution environment, Further
It is replacement policies based on the collective statistics that
will influence cache performance which is the focus of the
paper. On the other hand the conventional mapping strategies
are readily used even in this case, as these mapping strategies
are mainly based on cache sizes at respective levels and hence
a combination of conventional mapping strategies are used
based on the respective cache size.

Considering the block of data to be comprising of data
packets, the statistics of the data are analyzed and correspond-
ingly a weight is assigned to them namely critical, moderately
critical or non-critical. When these data packets are being
mapped, one parameter which is of prime importance is the
hit to miss ratio.

Under each of these mapping strategies data packets
from DRAM to cache are mapped in a predictive manner
by analyzing the current instructions in the queue. This
data packet mapping is performed by setting threshold
in terms of in terms of number of time stamps (of the

WIMAC simulator) by which the concerned instructions
will get executed. A suitable value for this threshold is
fixed to avoid the replacement of data packets mapped very
recently in a predictive manner. However during the cold start,
the threshold could be kept higher to avoid compulsory misses.

Data Based Replacement
Parameters

Application Based Replacement Parameters

Aop | App Completion Of o Data | Data | Data
Utilization|Frequency| talling| L1 12 13 | Application Packet | Utilization | Frequency
Stats | Stats | Stats |Occupancy|OccupancylOccupancy Execution (%) D[| sas Stats

— =

Fig. 2. Application and Data Statistics Table

There is an immediate need for application aware replace-
ment strategy. In conventional replacement schemes are track-
ing only the data statistics but not application statistics. But in
case of simultaneous multiple application execution both the
application and data statistics must be taken in to consideration
and hence replacement strategies should be based on collective
decision of data and application statuses.

For each block within a set

For each packet within a block

A ights to data |
{

Read the number of clock cycles after which the data is required for execution

Read the icatic iority of the it data packet

Read the Spatial and temporal locality statistics (LRU, MFU)

Read the Remaining amount of the data that is pending fo get executed

Read the stalling statistics of the related data packets

Read the data dependencies fieldi.e. based on the number of data dependent on the
-particular data

Maintain the ratio of data packets of a jonin L1:L2:13 of a

with respect to following parameters

ensuringthe even mapping of the data packets all the applications

Calculating weights of the data packet:
Based on the weights of the particular data, If a data value goes above/below a -
threshold value then the data packet is termed as High-weight/low-weight data

ights to the blocks=(

End
End

Fig. 3. Cache replacement heuristics algorithm

The statistics related to the data and application are
recorded, where in a application and its associated data, where
the various parametric values as listed in table shown in figure
2 are the inputs for replacement strategy. Thus the algorithm
calculates the weights of the associated data packets and
decides whether the packet could be dropped or not based
on its associated weights.

III. CACHE CONTROLLER :IMPLEMENTING REPLACEMENT
POLICIES

Resorting to simultaneous multiple application execution
across heterogeneous multi cores, replacement strategies play
a vital role to achieve overall cache hit and energy efficiency.
These replacement policies are discussed in detail bringing

201

ber of high weight blocks)-(Number of low weight blocks)

Tag search

“l BLOCK 1 I
i[_BLOCK?2
I
!
Caclle line n-1 ,/’ BLOCK K

DRAM

CACHESET 2_ S

w

S|
~ CACHESET 3

<<

o

I CACHE SET N |

DATA PACKETS OF DIFFERENT APPLICATIONS

APPLICATION 1

APPLICATION 2 E|APPLICATION 3 DAPPLIGATION 4 I:IAppucAﬂoN 5 .] APPLICATION & ﬁApmeAﬂON 7

N — number of sets in a cache , n- number of cache lines in a cache set, K- number of blocks in a DRAM

Fig. 1.

DATAFROM
ALFU
CONTROLLER

TO CACHE
CONTROLLER

REPLACE
BLOCKWITH

TRANSFER
FROML1
CACHE TO
ALFU

WEIGHT

Proposed Cache organisation for multiple applications

Available

CHECK SPACE
AVAILABILITY
IN PREVIOUS

LEVEL OF

CACHE
Not -Available

REPLACEMENT

HURISTICS

Fig. 4. Proposed Cache Controller Finite State Machine

into effect of both application characteristics and associated
instruction/data sets. On the other hand, with regard to cache
organization and mapping, conventional techniques are used.
Cache mapping is primarily decided by cache size and appli-
cation characteristics will not play a vital role. In the same
way, cache mapping strategies are dependent on cache size
and the levels. Either a single strategy or a combination of
direct, associative or set associative strategies is used.

A. Cache Controller: Finite State Machine

The cache controllers are present at each levels of cache.
The cache controller synchronizes the operations in a particu-
lar cache level. The working of the cache controller is similar

in all the 3 levels of cache. When there is a miss at a lower
level of cache, controller at the lower level sends a control
signal to the controller at next level in order to trigger a
search operation at that level. The cache controller involves
different execution paths for different replacement strategies.
Hence a Finite State Machine needs to be designed such that
various state transitions depend on the replacement policies.
The different replacement policies involve different statistics
and almost similar operations. Hence, the different policies can
be modeled as a single state. The design of the cache controller
revolves around designing a finite state machine the hardware
implementation of different replacement policies. From the

202

Appllcatlor\ ?nd Max/Min Deus.lon
. Data Statistics N —> Making
Divider Finders S
Table Circuitry
Subtractor
T
Local Cache Controller

Fig. 5. Hardware implementation of cache replacement strategies

above section it is evident that most of the operations involve
the replacement policies across all cache levels are almost
similar leading to a simpler cache controller design. However,
for parallel access of different cache levels, either independent
cache controller or a single controller can be shared across all
levels.

The replacement strategies for simultaneous multiple appli-
cation execution are simulated using Verilog. The utilization
statistics of datapackets and applications are obtained from
their statistics table shown in figure 2 present in section
2.Using these statistics as input,the cache controller shown in
figure 4 decides either datapackets or applications are LRU,
MFU,etc.

IV. MULTIPLE APPLICATION EXECUTION BASED POWER
MODEL FOR THE CACHE SYSTEM

A unified energy model that captures the execution dy-
namics of the cache system is essential for the design of
the cache system. Conventional cache system design method-
ologies make use of cache system simulation tools that are
integrated with standard energy models. This method of energy
estimation holds good for simple mapping and replacement
policies. For the replacement policies that have been presented
in the previous section for multiple application execution,
there is need for a more rigorous method for estimation of
energy by taking into consideration the energy consumed by
the controllers that implement the working of the replacement
policies. This section presents an energy model based on
replacement policies that become essential when simultaneous
execution of multiple applications without space-time sharing
is in perspective.

The model can be viewed at two levels: the replacement
policy execution level and the read/write level. This level
encompasses all the operations that are associated with the
working of the heuristics based replacement policy. The energy
paths taken by the various states in the replacement policies
are first listed as shown in figure 9. The operations involved
such as search, counting, comparator operations, subtraction
etc. are individually traced during execution and based on the
number of times the respective units are utilized, the energy
associated with the input transitions are computed. Conven-
tional replacement policies do not involve many operations as
the proposed approach and hence an execution based power
model is often not given as much importance.

| susmactor | [COUNTERS |

| COMPARATOR | | SEARCH OPERATION |

| DIVIDE AND CONQURE | | SINGLE COUNTER |

| GRAPH TRAVERSAL | | SUBTRACTORS |

SEARCH OPERATION

Fig. 6. Energy path taken during cache replacement

The read/write level of the model makes use of the conven-
tional cache models to estimate the energy consumption of the
cache. Based on technology and size, the energy associated
with wordline, read/write and leakage power of every cache
level. This is integrated with the execution level model and
the energy associated with the entire cache system in the
replacement scenario is calculated using this model.

V. RESULTS AND ANALYSIS

To illustrate the effeciency of our proposed cache paradigm
we use an in-house built simulator, Warft India MAny Core
(WIMAC) [15] to capture and compare the cache dynamics
of various classes of applications. The WIMAC simulator is
made cycle accurate to mimic the behaviour of the underlying
architecture with great precision. An integrated optimized en-
gine helps to prune the architectural design space to select the
most suitable architectural configuration to meet the power and
performance requirements of the application. The architectures
of Algorithm Level Functional Unit (ALFU) [2] and Compiler
Acceleration on Silicon (CAS) [1] are part of this simulation
framework.

Number of cores 9

L3 cache size 2MB
L2 cache size 256KB
L1 cache size 16KB
Number of L1 cache lines 448
Number of L2 cache lines 448
Number of L3 cache lines 3800
L1 associativity 4

L2 associativity 4
Number of packets 4

Fig. 7. Sample Architecture table

Figure 7 shows the architectural specifications we have
taken for our simulations. We have used SPEC-INT equiv-
alent benchmarks to analyse the effectiveness of the proposed
heuristics by scaling up the number of applications in every
simulation run. Executing multiple applications simultane-
ously without space time sharing increases the independent
instruction count, thereby improving resource utilization which
indirectly contributes to better cache hit rate. From the graphs,

203

Single application Double application

%
©
9
02
£

3000 6000 000 12000
Clock cycles

#BERBEEE B8N

3000 6000 5000 12000
Clock cycles

Triple application

i

3000 000 000 12000
Clock cycles

B 8

Y-axis represents
cache hit rate in
all three plots

B2 88

Fig. 8. Cache Hit Ratio varying across the entire simulation
One application Two applications
960 960
940
955
920
900 950
880 945
860
840 940
820 035
800
780 930
760 925
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Clock cycles Clock cycles
Three applications.
1035
1030
1025
13?2 Y-axis represents average
1010 on-chip energy
1005 consumption (in micro
1000 joules) for all 3 plots
995
9290
985
980 2000 4000 6000 8000 10000 12000
Clock cycles
Fig. 9. Single and Multiple power model results for a specific sample of

simulation after cold start

it is quite evident that our heuristics has aided in improving the
cache hit rate by 8-11% for simultaneous multiple application
execution.

For the purpose of energy estimation, an execution sample
of about 200 clock cycles much after the cold start period
is considered. As discussed earlier, the cache hit ratio for
a single application is about 70%. The energy consumption
is inherently lesser for this case and shoots up occasionally
as can be seen in Figure 9. This shoot up in energy can be
attributed to the employment of the replacement policies. In
the cases where two and three applications are simultaneously
executed together, the overall energy consumption increases
due to better cache hit ratio which is a consequence of the
proposed mapping and replacement policies. However the rise
in energy consumption is not very sharp and is significantly
kept constrained by the mapping and replacement policies
which reduce the number of misses.

VI. CONCLUSION

The paper focusses on cache organization taking in to con-
sideration simultaneous multiple application execution without
space time sharing. The effectiveness of the replacement strate-
gies related to application as well as data statistics is stressed
upon. The cache controller architecture and its interaction is
distinctively brought out to accurately predict the execution
delay in incorporating the heuristics and the associated cache
execution energy model is proposed to accurately capture
the energy spent on cache execution paths. Thus, the paper
comprehensively captures the cache system paradigm catering
to the multiple application execution with accurate execution
energy model.

REFERENCES

[1

—

N.Venkateswaran et al Complation Accelerator on Silicon published in
the proceedings of IEEE International Symposium on VLSI 2012
N.Venkateswaran et. al SCOC IP cores for custom built supercomputing
nodes published in the proceedings of IEEE International Symposium on
VLSI 2012

[3] Keshavan Varadarajan et. al Molecular Caches: A caching structure for

dynamic creation of application-specific Heterogeneous cache regions ,

In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO 39), 2006

Kim, Yoongu, et al. ATLAS: A scalable and high-performance scheduling

algorithm for multiple memory controllers High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on.

IEEE, 2010.

[5] Chang Joo Lee et al Prefetch-Aware Memory Controllers , IEEE Trans-

actions on computers, VOL. 60, NO. 10.(October 2011)

Aamer Jaleel et al CRUISE: cache replacement and utility-aware

scheduling , In Proceedings of the seventeenth international conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS XVII).

Phadke, Sujay, and Satish Narayanasamy MLP aware heterogeneous

memory system, Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2011. IEEE, 2011.

[8] R. Kumar et alSingle-ISA Heterogeneous Multi-Core Architectures for
Multithreaded Workload Performance , SIGARCH Comput. Archit. News
32, 2 (March 2004)

[9] Lee, Chang Joo, et al. Improving memory bank-level parallelism in the
presence of prefetching, Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2009.

[10] Ipek, Engin, et al. Self-optimizing memory controllers: A reinforcement
learning approach, Computer Architecture, 2008. ISCA’08. 35th Interna-
tional Symposium on. IEEE, 2008.

[11] Subramanian, Lavanya, et al. MISE: Providing Performance Predictabil-
ity and Improving Fairness in Shared Main Memory Systems, Proceedings
of the 19th International Symposium on High Performance Computer
Architecture.

[12] Ausavarungnirun, Rachata, et al. Staged memory scheduling: Achieving
high performance and scalability in heterogeneous systems, Proceedings
of the 39th International Symposium on Computer Architecture. IEEE
Press, 2012.

[13] Das, Reetuparna, et al. Application-aware prioritization mechanisms
for on-chip networks, Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM International Symposium on. IEEE, 2009.

[14] Zhuravlev, Sergey, Sergey Blagodurov, and Alexandra
Fedorova.Addressing shared resource contention in multicore processors
via scheduling, ACM SIGARCH Computer Architecture News. Vol. 38.
No. 1. ACM, 2010.

[15] Warft India MAny
http://www.warftindia.org/joomla

[16] Venkatraman Govindaraju et al Dynamically Specialized Datapaths for

Energy Efficient ComputingProceedings of the 17th International Sym-

posium on High-Performance Computer Architecture (HPCA), February

2011

[2

—

[4

=

[6

[t

[7

[

Core (WIMAC) simulator

204

[17] Sanjeev Kumar et al., Carbon: Architectural Support for Fine-Grained
Parallelism on Chip MultiprocessorsIn the Proceedings of IEEE/ACM
International Symposium on Computer Architecture (ISCA), San Diego,
California, June 2007

[18] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen Towards practical page
coloring-based multicore cache management, In Proceedings of the 4th
ACM European conference on Computer systems (EuroSys ’09). ACM,
New York, NY, USA, 89-102. DOI=10.1145/1519065.1519076

[19] Mohammad Abdullah Al Faruque et al., ADAM: run-time agent-based
distributed application mapping for on-chip communication, In Proceed-
ings of the 45th annual Design Automation Conference (DAC *08). ACM,
New York, NY, USA, 760-765

[20] Qureshi, Moinuddin K., and Yale N. Patt. Utility-based cache partition-
ing: A low-overhead, high-performance, runtime mechanism to partition
shared caches, Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2006

[21] Jaleel, Aamer, et al., High performance cache replacement using re-
reference interval prediction (RRIP), ACM SIGARCH Computer Archi-
tecture News. Vol. 38. No. 3. ACM, 2010

205

