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Abstract—A high performance and low power node archi-
tecture becomes crucial in the design of future generation
supercomputers. In this paper, we present a generic set of
cells for designing complex functional units that are capable
of executing an algorithm of reasonable size. They are called
Algorithm Level Functional Units (ALFUs) and a suitable VLSI
design paradigm for them is proposed in this paper. We provide
a comparative analysis of many core processors based on
ALFUs against ALUs to show the reduced generation of control
signals and lesser number of memory accesses, instruction
fetches along with increased cache hit rates, resulting in better
performance and power consumption. ALFUs have led to the
inception of the SuperComputer On Chip (SCOC) IP core
paradigm for designing high performance and low power
supercomputing clusters. The proposed SCOC IP cores are
compared with the existing IP cores used in supercomputing
clusters to bring out the improved features of the former.

Keywords-Supercomputing; heterogeneous cores; SCOC IP
Cores; complex functional units; ALFUs

I. INTRODUCTION

The future of computational sciences depends on the

deliverance of exascale computing power in the foresee-

able future. However, global energy crisis places a huge

constraint in achieving this goal with traditional off-the-

shelf processors. The onus of delivering exascale comput-

ing by overcoming the energy consumption concerns lies

with computer architects. A well known solution to obtain

high energy efficiency is the use of application specific

custom processors. However, the design effort and the high

cost overhead associated with ASICs prevent them from

mainstream use. Therefore, the twin constraints – energy

efficiency and infrastructure costs, force us to explore new

frontiers in the design space where custom specialization

co-exists with an existing architecture.

In order to exploit this young design space, a novel node

architecture model [1] based on the use of large functional

units and other architectural elements was proposed. In this

paper, we present the design and analysis of a more generic

set of cells used in building Algorithm Level Functional

Units (ALFUs). These ALFUs are capable of executing a

complete algorithm of reasonable size driven by a single

instruction. The corresponding Algorithm Level Instruction

Set Architecture (ALISA) is a superset of other instruction

sets such as vector instructions, CISC and VLIW which

are used in various multi-core/many core processors. The

term ALFU based design, frequently used in this paper,

refers to the design of heterogeneous many core processors

using ALFUs and scalars. The ALFUs are designed for

a wide variety of numeric, semi-numeric and non-numeric

algorithms.

Algorithm Level Functional Units (ALFUs) are designed

by hardwiring a set of scalars based on the characteristics of

an algorithm. A balanced mix of these ALFUs and scalars

can be used to execute applications that are computationally

intensive. The use of such units provides a variety of advan-

tages such as a reduction in overall power consumption and

increased performance. A significant drop in the number of

control sequences associated with each instruction, memory

access, the number of instruction fetches and the overall

control complexity are be observed. Additionally, the cache

performance is improved.

The simultaneous execution of multiple applications with-

out space or time sharing (SMAPP) at the supercomputing

cluster level would enable cost sharing, while avoiding

substantial performance sharing amongst multiple users [2].

A new class of IP cores called SuperComputer On Chip

(SCOC) IP cores for low power supercomputing clusters

based on ALFUs is introduced in this paper. The design

of low power, yet high performance many core processors

which support the simultaneous execution of multiple ap-

plications without space or time sharing (SMAPP) at the

supercomputing cluster level is simplified by the use of the

SCOC IP cores. These IP cores are customizable to a great

extent and can be designed for any architectural set. Section

V elucidates the design of SCOC IP cores for architectures

based on the CUBEMACH design paradigm [3].

The use of large functional units that provide ASIC-

like functionality to the cores has earlier been advocated

in the works of [1] and [4]. Our paper provides the design

methodology and a systematic analysis of the use of ALFUs

in heterogeneous many core processors.
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Table I
TYPES OF CELLS USED TO DESIGN ALFUS

Cell Input Output Functionality Employed In

DACSRAM A Ai, Bi Ci Ci = Ai ⊕Bi Adder,max/min finder

DACSRAM B Ai, Bi Ci Ci = Ai +Bi Multiplier, inner product

DACSRAM C Ai, Bi Ci Ci = AiBi Comparator unit,sorter BFS and
DFS

DAASRAM Ai, Bi, Ci Sum,Ci Sum = Ai ⊕Bi ⊕ Ci

Carry = (Ai ⊕Bi)Ci +AiBi Multiple operand adder,KL graph
unit

DACSRAM A1 Ai, Bi Pi, Gi Pi = Ai +Bi, Gi = AiBi Adder/subtractor,comparator,Matrix
adder

DACSRAM A2 Ai, Bi Ai, Bi, Ci Sum = Ai ⊕Bi ⊕ Ci Adder/subtractor,matrix multiplier

DACSRAM B1 Gi,j , Gj+1,k, Pi,j , Pj+1,k Gi,k, Pi,k Pi,k = Pi,j .Pj+1,k

Gi,k = (Gij .Pj+1,k) +Gj+1,k Adder/subtractor,comparator,
sorter

DACSRAM B2 Pi,j , Gi,j , Ci Ci,j Ci = (Pi,j .Ci) +Gi,j Adder/subtractor,crout unit

II. RELATED WORK

It is important not to confuse the ALFUs with acceler-

ators. Processors relying on accelerators for higher perfor-

mance seldom have binary compatibility and require a stand-

alone module for decoupling the Instruction Set Architec-

ture [5]. Unlike accelerators that are stand-alone units, the

ALFUs are an integral part of the processor itself, thereby

eliminating the issues of compatibility that the accelerators

bring in.

Another interesting work that can be compared with the

ALFU is the Dynamically Specialized Datapaths [6].The

overheads due to switching in the DySER blocks are ones

that ALFUs do not face and hence the ALFUs are ex-

pected to offer better performance. The fusion of various

instructions into Macro-ops would mean that the Instruction

Decode units would still have to actually decode as many

instructions even though they have been fused into a single

Macro-op. A single ALISA instruction triggers the execution

of an ALFU. Hence, the fetch and decode complexities of

the ALISA is lesser.

Lawrence Berkeley National Laboratory recently adopted

the Tensilica System-On-Chip IP cores which are partially

customizable, to design a supercomputing cluster for climate

modeling [7]. The Xtensa IP cores are customizable with

the provision of adding a single application specific block

and its associated instructions. The SCOC IP cores, on the

other hand provide complete customization of the design of

all the ALFUs or scalars, the communication backbone and

even the compiler/instruction scheduler.

III. ARCHITECTURE OF ALGORITHM LEVEL

FUNCTIONAL UNITS

A set of cells capable of performing basic operations has

been designed which forms the building blocks of ALFUs.

The cells developed and their functionalities are shown in

Table I.

ALFUs are designed for a wide class of algorithms

(Numeric, Semi-Numeric and Non-Numeric). Some of the
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Figure 1. Cell based generic ALFU architecture
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Figure 2. ALFU architecture of the Minimum Spanning Tree Algorithm

cells that have most commonly been used for designing

ALFUs are shown in Table I.

A set of appropriate cells are selected from the cell library

to build pipelinable stages with suitable interconnection nets

to form the ALFUs and scalars. The cell based generic

architecture of an ALFU is shown in Figure 1.

Understandably, the cell with maximum delay decides the

delay of the particular stage. Suitable latching is provided

to match the delays of the cells. The cell with maximum

delay across all the stages decides the pipelining rate of the

ALFU. By suitable arrangement of the cells, the pipelining

delay of the ALFU can be reduced.

A. ALFU for Minimum Spanning Tree Algorithm

The ALFU designed for the Minimum Spanning Tree

(MST) algorithm shown in Figure 2 is a table based archi-

tecture. The control circuit present in the ALFU generates

the appropriate control signals to enable searching the table

for the corresponding node, check for formation of cycles

and choose the shortest edge from a selected entry. The

table contains the set of node and edge weights, whose

values are compared against the source node, checked for
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Figure 3. Cell level architecture for Minimum Operand Finder Unit

Figure 4. The working of the MST architecture was verified functionally.

formation of cycles and the shortest edge is chosen using

the Minimum Operand Finder shown in Figure 3. This is

iterated taking every node of the graph as source node to

find the Prim’s Minimum Spanning Tree. This effectively

minimizes the number of control sequences associated with

the corresponding instructions. The architecture was verified

for a small problem size using Verilog HDL as shown in

Figure 4.

The number of pipeline stages of the ALFUs implies

that the pipelining depth is variable as per requirement to

suit simultaneous execution of multiple instructions from

multiple applications in a single ALFU. The description of

other ALFU architectures can be found in [8].

IV. ALGORITHM LEVEL FUNCTIONAL UNITS :

PERFORMANCE AND POWER ANALYSIS

A. Impact of ALFUs on instruction complexity

A single ALISA instruction is inherently equivalent to

several dependent and independent ALU instructions. In this

sense, a single ALISA instruction is equivalent to several

VLIW or vector instructions. In effect, ALISA instructions

are such that a single instruction is equivalent to 10s or

even 100s of scalar instructions. A single ALISA instruction

computes a complete algorithm, it is a superset of all other

ISAs, VLIW, vector or otherwise.

Table II
GENERIC SET OF EQUATIONS FOR MOV AND COMPUTE INSTRUCTIONS

ASSOCIATED WITH ALFUS AND ALUS. HERE, N IS THE PROBLEM SIZE

OF THE APPLICATION AND α IS THE PROBLEM SIZE OF THE ALFU.

Algorithm Type of Instruction ALU ALFU

Matrix Multiplication
MOV N3 N3

α3

COMPUTE N2(N + 1)
N2(N+1)

α2

Matrix Addition
MOV N2 N3

α3

COMPUTE N2 N2

α2

Max/Min Finder
MOV N N

COMPUTE N N
α

Minimum Spanning Tree
MOV N N

COMPUTE N (N
α
)

Multiple Operand Adder
MOV N N − 1

COMPUTE N
2

1

Inner Product
MOV N N

α

COMPUTE N + 1 N
α

+ 1

Odd Even Transposition Sorting
MOV 3N

2
(N + 1) 3N

2α
(N
α

+ 1)

COMPUTE N(N−1)
2

N(N
α
− 1)/2α

Kernighan Lin Graph Partitioning
MOV N2+2N+16

8

N2

α2 +2N
α

+16

8

COMPUTE N2+10N+8
8

N2

α2 +10N
α

+8

8

Graph Traversal
MOV N − 1 N/α− 1

COMPUTE N − 1 N/α− 1

The nature of the ALISA used in ALFU based processors

implies that the number of instructions to be executed by the

functional units to run a particular application is inherently

lesser in comparison with ALU based processors. This

would imply that the power consumed due to instruction

fetch and decode in ALFU based processors is significantly

lower. The circuitry used in association with instruction fetch

and decode is used less often, amounting to lower power

consumption. From the tabulated results in Table II, it

observed that there is a drop in power consumption with

respect to the instruction fetch.

The Table II, contains a generalized set of equations are

derived for the number of ALISA instructions (COMPUTE)

that are required to execute a particular algorithm using

ALFU based and ALU based cores. Along with these equa-

tions, the number of instructions that is associated with move

operations (MOV) are also estimated. Here, N represents the

problem size of algorithm being executed and α represents

the problem size for which the ALFU is designed.
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Table III
COMPARISON OF COMPLETE SET OF CONTROL SEQUENCES OF ALFUS

WITH MINIMUM NUMBER OF EXPLICIT CONTROL SEQUENCES OF ALUS

No. of control sequences

Algorithm Problem Size ALU ALFU

54 (Pipelined) 38 (Pipelined)

Matrix Multiplication 2× 2 46 (Parallel) 32 (Parallel)

42 (Pipelined) 34 (Pipelined)

Matrix Addition 2× 2 40 (Parallel) 32 (Parallel)

Crouts 2× 2 24 18

Matrix Inverse 3× 3 86 64

Minimum Spanning Tree 8 Node 164 108

Max/Min Finder 8 Operands 22 17

Multiple Operand Adder 9 Operands 28 22

KL Graph Partitioning 4 Node 140 108

Inner Product 8 Operands 47 38

Sorting 8 Operands 29 22
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Figure 5. The cache hit ratio for each of the SPEC equivalent benchmarks
that were provided as worload inputs to the WIMAC simulator [3]

B. Impact of ALFUs on control complexity

Another important aspect of the usage of ALFUs in many

core processors is that the number of control sequences is

considerably reduced in comparison with their ALU based

counterparts. This is particularly because the ALFUs are

made up of several hardwired scalar units. As a result,

much of the control sequences get absorbed within the large

functional unit.

By studying the nature of algorithms, the number of

control sequences needed for those have been computed.

The complete analysis of the control sequences associated

with the ALFUs is done by estimating the control se-

quences associated for each operation. There are no specific

benchmarks developed to estimate the number of control

sequences associated with ALU instructions. So the mini-

mum number of explicit control sequences that is associated

with the execution on an algorithm in ALU based cores

are considered for comparison. This was done in order

to reduce the complexity of analysis and was found that

the control sequences associated with the ALFU based

processors was significantly lesser than the minimum set

of explicit sequences that were considered themselves.

14.32 15.3 
7.43 7.8 

15.3 23.5 

319.3 
730.5 

97.6 130.32 213.6 
812.4 

astar bzip2 h264ref mcf omnetpp gcc

Overall Performance in G Ops 
ALU ALFU

Figure 6. A comparison of the overall performance metric of ALFU based
processors against their ALU based counterparts

C. Impact of ALFUs on cache hit in a heterogeneous many
core processor

Cache with varying sizes (shown in Table IV) adopting

the 4-way set associative mapping and a heuristic based

replacement policy. As the data requirement of each ALFU

is quite large because of the size of operands that each

ALFU operates on is large. The increased hit ratios of ALFU

based architecture over ALU is because of the existence

of dependencies across instructions which get localized as

a consequence of the hardwired scalar units. A set of

cache replacement heuristics have been developed for the

CUBEMACH design paradigm which suit the execution

of multiple spplications simultaneously without space or

time sharing [3]. This reduces number of conflict misses

as well as capacity misses thereby showing a considerable

improvement in cache hit ratios as compared to conventional

ALU based heterogeneous many core processors.

D. Impact of ALFUs on the overall performance figures

The overall performance of the ALFU based cores is

found to be higher than that of the ALU based cores. Fig-

ure 6 shows the simulation results of a CUBEMACH design

paradigm [3] based architecture. The WIMAC simulator [3]

has been used, whose workload inputs are SPEC equivalent

Benchmarks. The overall performance of the ALFU based

cores is understandably higher due to the reduced number

of memory accesses from the use of ALFUs. The Figure 6

is not to scale.

E. Estimation of power consumption of individual ALFUs

Design of ALFU based heterogeneous cores needs to be

done very meticulously, keeping in mind various constraints

such as the interconnection between ALFUs, the power

consumed by the ALFUs etc. A wide range of power

estimation methods have been discussed in [9]. The method

used by us is a generic model to estimate the dynamic

power consumption of any functional unit. The development

of tools that can effectively estimate the dynamic power

consumption for different architectures would sufficiently

simplify the task of the designer.
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Table IV
CUBEMACH DESIGN PARADIGM BASED ARCHITECTURAL

SPECIFICATION WHICH IS AN INPUT TO THE WIMAC SIMULATOR

SPEC EQUIVALENT WORKLOAD

Architectural Parameters astar gcc bzip2 mcf omnetpp h264ref

Cores 4 4 4 4 4 4

Cache Size

L1 32kB 64kB 32kB 32kB 32kB 64kB

L2 256kB 512kB 256kB 256kB 256kB 512kB

L3 4MB 8MB 4MB 4MB 4MB 8MB

SubLocal Router Stages
Input 4 8 4 4 4 8

Output 4 8 4 4 4 8

Local Router Stages
Input 8 12 8 8 8 12

Output 4 6 4 4 4 6

Global Router Stages
Input 12 18 12 12 12 18

Output 6 12 6 6 6 12

Instruction word Buffer Size 16kB 32kB 16kB 16kB 16kB 32kB

Network Based 16kB 32kB 16kB 16kB 16kB 32kB

Clock Frequency 800MHz
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Figure 7. The architecture of the sorter ALFU has been illustrated above.
The architecture shown here is an 8 element Batcher’s Odd Even Algorithm
based Sorter.

A probabilistic model has been developed to estimate the

total activity factor of each ALFU, with the inputs to an

ALFU being in any distribution of choice. The model has

been evolved in a bottom up manner. As shown in Figure

1, the stages of the ALFUs are designed using the standard

cells.

The results of the power analysis for a simple ALFU

architecture has been shown. Figure 7 shows the architecture

of a Batchers Odd Even Transposition Sorter. The archi-

tecture of the Sorter ALFU is scalable to any number of

elements, but the architecture given in Figure 7 is an 8

element Sorter. Based on the model, activity factors of the

cells used to make up the Sorter ALFU are obtained and the

dynamic power consumption of the ALFU is estimated. The

inputs to the ALFU are considered to be a set of stochastic

variables based on a distribution of a particular type. The

Table V shows the results of power estimation of the Sorter

ALFU with the inputs to the ALFUs assumed to be normally

distributed.

Table V
POWER ESTIMATION RESULTS FOR THE 8 NODE SORTER

ARCHITECTURE GIVEN ABOVE.

Word-length Activity Factor Gate count Number of idle gates

8 0.165367 1152 961

16 0.164885 2688 2244

32 0.164774 5760 4810

64 0.164748 11904 9942

128 0.164742 24192 3985
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Figure 8. Structure of the proposed SCOC IP core

V. DESIGN OF SCOC IP CORES FOR HETEROGENEOUS

MANY CORE PROCESSORS USING ALFUS

In the design of the ALFU based processors, the cost

factor should not be a deterrent. A class of IP cores for

heterogeneous many core processors can be designed using

ALFUs and are called SuperComputer On Chip (SCOC) IP

cores. These IP cores are a large library of scalable and

customizable cores which can be designed at different levels

of abstractions.

The structure of the IP core is as shown in Fig. 8 . The

SCOC IP core comprises of three main elements; the archi-

tectural components of the CUBEMACH design paradigm

[3] Compilation Accelerator on Silicon, On Core Network,

on chip memory organization, ALFUs/scalars; WARFT India

MAny Core (WIMAC) simulator; the Optimizer Engine. The

SCOC IP core presented here is a plug and play module and

will not require additional configuration.

The Tensilica Xtensa IP core that is used in the Green

Flash supercomputing cluster, on the other hand, consists

of the Base CPU, a cycle accurate simulator, the application

specific datapath, the set of registers and Floating Point Unit.

The SCOC IP cores support simultaneous execution of

multiple applications (SMAPP) at the supercomputing clus-

ter level. This means that the pipeline of the ALFUs in

the SCOC IP cores can contain instructions from multiple

applications in different stages. SMAPP inherently cost
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and hardware sharing across multiple applications run by

multiple users or multiple applications run by a single user.

The Compilation Accelerator on Silicon (CAS) architec-

ture that has been detailed in [10], is a customizable hard-

ware code generator cum dynamic scheduler. The architec-

ture specifications and the netlist of the CAS is an important

part of the IP core. In comparison with the compiler in

the Xtensa IP core used in the Green Flash supercomputer,

which is a vectorizing compiler that is software based, the

hardware based CAS offers a multitude of advantages. The

instruction issue rate and scheduling rate is much higher due

to the hardware instruction generator and dynamic scheduler.

The On Core Network (OCN) is a circuit switched net-

work that forms the communication backbone across the

many core processor. The OCN structure is based on the

Multi-stage Interconnection Network (MIN) and is com-

pletely scalable and customizable in accordance with the

specification.

A balanced mix of ALFUs and the scalars are employed

for computation purposes. The design of ALFUs has already

been elaborated in Section II. In comparison with the Green

Flash supercomputing cluster, the Xtensa IP cores offer

customization for only one application-specific block of the

core. The SCOC IP core provides complete customization

with respect to the kind of units that should be present in

every core.

The aforementioned architectural components are pro-

vided as inputs to the WARFT India MAny Core Simulator

(WIMAC), which is a cycle accurate simulator tuned for

the CUBEMACH design paradigm. The WIMAC simulator

is tightly coupled with an Optimizer Engine, based on Game

Theory and Simulated Annealing that prunes the design

space search of the CUBEMACH based architectures and

also contributes to the core formation based on the KL graph

partitioning algorithm.

VI. CONCLUSION

Future generation supercomputers would ideally have high

performance per watt. To achieve this, processors should

be designed with ASIC-like efficiency. Algorithm Level

Functional Units (ALFUs), proposed in this paper, can

aid in achieving such high performance, while maintaining

reasonable energy efficiency. The design of these ALFUs

are completely cell based and is performed by hard wiring

a suitable set of scalar units based on their respective parallel

algorithms. The use of ALFU improves processor efficiency

by generating reduced number of control signals, memory

accesses and instruction fetches, along with better cache hit

rates. The power consumption of the associated instruction

fetch and control circuitry is also reduced significantly. Our

experimental evaluations show that high improvement in

performance can be observed when ALFU based cores are

used instead of ALU based cores. Further, we also show how

the ALFUs can be implemented in a CUBEMACH based

architecture as SCOC IP cores and their effectiveness when

we simultaneously execute multiple applications without

space or time sharing.
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