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We introduce Caliper, a technique for accurately estimating performance interference occurring
in shared servers. Caliper overcomes the limitations of prior approaches by leveraging a micro-
experiment based technique. In contrast to state-of-the-art approaches that focus on periodically
pausing co-running applications to estimate slowdown, Caliper utilizes a strategic phase-triggered
technique to capture interference due to co-location. This enables Caliper to orchestrate an accurate
and low-overhead interference estimation technique that can be readily deployed in existing produc-
tion systems. We evaluate Caliper for a broad spectrum of workload scenarios, demonstrating its
ability to seamlessly support up to 16 applications running simultaneously and outperforming the
state-of-the-art approaches.
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1 INTRODUCTION

Improving resource utilization in modern multi-core systems has been identified as a critical
design goal by large-scale datacenters designers [14]. The motivating factor leading to this
trend is the underutilization of multi-core processors due to overprovisioning. Towards
realizing this objective, co-locating multiple batch applications on a single server has proven
to be beneficial [19, 33, 34, 40, 44, 61–63]. In cloud computing, system virtualization
techniques have been instrumental in providing performance isolation while co-locating
multiple applications present in under-utilized servers.
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Although the commodity hypervisors such as Xen and KVM have been achieving per-
formance isolation at some level through strict CPU reservations, static partitioning of
memory/disk space, and network bandwidth [32, 51], it is inevitable to avoid shared re-
source contentions, especially at micro-architectural resources. These performance critical
resources including last-level cache, memory controller, and main memory bandwidth cause
the slowdown of applications in co-located environments. Moreover, the magnitude at which
applications are slowed down is highly dependent on the nature of the co-running applications
and the availability of shared resources [19, 40].

Under such circumstances, it is essential to have the ability to estimate the slowdown of
applications caused due to co-location accurately. Such slowdown estimates could enable
resource allocation of shared resources to each application in a slowdown aware manner moti-
vated towards providing strong Quality-of-Service (QoS) guarantees. Also, in Infrastructure-
as-a-Service (IaaS) clouds, such a mechanism could be used to bill its customers appropriately
based on the amount of slowdown that their applications have been subjected to by the
co-running applications [16, 58].

There have been many efforts that try to estimate slowdown of applications at runtime [16,
17, 23, 25, 40, 42, 49, 58, 61, 68]. Prior software approaches [16, 25, 61, 68] utilize an online
runtime system that periodically pauses all the applications except one for a short time,
thus allowing the running application to monopolize the computing resources on the system
during those pause periods. The performance of the running application during such pause
periods is used to determine slowdown.

A few other hardware enabled approaches [22, 23, 42, 58] designed to estimate slowdown
are based on a methodology that aims at modeling interference bottom up as an aggregate of
interference across multiple processor subsystems. However, this may prove to be prohibitively
difficult as core counts increase and processor architectures accrue performance improvement
mechanisms that are ever larger in number and complexity. These approaches leave several
challenges that pose barriers to its adoption:
(1) Low accuracy: The most recent state-of-the-art technique addressing this prob-

lem [16] neglects the notion of application phases and pauses co-running appli-
cations periodically at millisecond granularity. This methodology shows estimation
errors of up to 40% leaving significant room for improvement in accuracy.

(2) High overhead: It has been reported that datacenter providers tolerate no more than
1% to 2% degradation in performance to support dynamic monitoring approaches in
production [55]. However, the execution time overhead of the state-of-the-art software
interference estimation technique can be as significant as 12% [16].

(3) Non-reliable (or less scalable): The accuracy and the overhead of prior ap-
proaches [16, 23, 25, 42, 58] deteriorate as the number of co-running applications
increases. As the number of cores on modern servers keeps increasing, deploying a
technique that inadequately supports current and future levels of multi-tenancy would
not be a preferred choice.

(4) Priori knowledge: Another class of static techniques requires a priori [24, 40]
knowledge about all workloads and the profiling for each type of workload. This
requirement limits the types of workloads for which such a technique can be applied
and, more broadly, the kind of datacenters that can adopt the approach (e.g., public
clouds).

In this study, we design a mechanism called micro-experiments – short-lived measurements
of application performance under different conditions – to accurately estimate the interference
experienced by applications due to performance degradation. On top of this mechanism, we
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introduce Caliper to estimate slowdown of an application at runtime with high accuracy
and negligible overhead. A micro-experiment is a period during which the performance
of an application is abstracted from the interference incurred by co-runners, using which
an accurate estimate of its slowdown can be obtained. One of the most crucial challenges
while utilizing micro-experiments for estimating the slowdown is to determine when micro-
experiments should be performed. We observe that interference does not change significantly
within a single application phase. Thus, the problem of identifying when to perform a
micro-experiment boils down towards identifying phases of applications at runtime while
executing with co-runners. Triggering a micro-experiment on the application at each of its
phases once allows the runtime to estimate co-runner interference with negligible overheads
accurately.
To enable Caliper, one of the most significant challenges is to accurately, efficiently, and

continuously detect not only phases within applications but also phases in application’s
co-runners. In this paper, we design a solution to identify all such phases by leveraging
performance monitoring units (PMUs). Since each application has different sensitivities
towards architectural resources, we identify the right set of PMU types that can differentiate
phase changes across a wide variety of unknown applications. We perform cross-validation on
these selected PMU types on a spectrum of application workloads to demonstrate generality.
The contributions of this paper are as follows.

• Phase aware micro-experiments: We introduce a novel phase aware interference
estimation technique using micro-experiments that is accurate, lightweight and can
efficiently support multi-tenancy which can be deployed in clouds or datacenter envi-
ronments.

• Resilient phase detection: We design a novel methodology called PMU scoreboard-
ing that extracts the representative set of performance monitoring units for detecting
phase changes at multi-tenant execution scenarios. Without a priori knowledge about
the workloads, the extracted PMU types are effective in terms of detecting phase
changes.

• Real-world scenarios: We evaluate our runtime system on real systems for a variety
of applications including SPEC CPU2006 [29], NAS Parallel Benchmarks [12], Sirius-
Suite [28] and DjiNN&Tonic Suite [27]. Moreover, we evaluate the effectiveness of the
proposed runtime as we increase the number of executing applications contexts. In
addition to that, we have also evaluated our technique on different microarchitectural
subsystems to demonstrate its platform independent nature.

With Caliper, we are able to estimate the slowdown at multi-tenant execution scenarios
accurately with a mean absolute error of 4% and negligible overhead of less than 1% for a
broad spectrum of workload scenarios when executing 16 applications. Compared to state-of-
the-art interference estimation techniques [16], our technique shows up to 5× more accuracy
with 3× less overhead making it readily deployable in current and future datacenters.

The rest of paper is organized as follows. Section 2 describes the background and discusses
the limitations of the prior study. Section 3 introduces the proposed design, Caliper. To
achieve the design goals, Section 4 defines phase boundaries, and section 5 presents our
technique identifying phase changes in co-location. Section 6 presents the experimental
results. Section 7 describes the related work, and Section 8 concludes the paper.
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2 BACKGROUND

In this section, we introduce key challenges that are present while co-locating multiple batch
applications in multi-core systems. We then illustrate the state-of-the-art techniques that
try to address these challenges and their limitations.

2.1 Multi-tenant Execution of Batch Applications

Modern computer systems host a wide range of applications of varying nature. These
applications are broadly classified into two types (1) batch applications and (2) user-facing
applications. Applications which are of batch type are throughput oriented and not user-
facing. This type of application represents today’s workloads that execute in datacenters and
clouds. Consolidation of such applications to increase the resource utilization of the system is
a common trend [9, 11]. On the other hand, another class of applications like memcached and
web search is latency critical and hence is required to meet strict Quality of Service (QoS)
guarantees. As a result, the consolidation of such latency critical applications with other
applications is generally avoided as co-location will affect the latency of these applications
significantly [2, 41, 70]. These applications are typically housed in private datacenters or
run on dedicated machines that guarantee Service Level Agreements (SLAs).

Although the consolidation of batch applications onto a single server increases the resource
utilization, it has a direct impact on individual application performance. State-of-the-art
virtualization technologies try to provide performance isolation at some levels. Current
hypervisors perform:
(1) Strict CPU reservations by disallowing sharing of CPU cores among different applica-

tions [13, 35].
(2) Statically partitioning memory and disk space among different applications [13, 35].
(3) Static partitioning of I/O and network bandwidth proportionally among applications

using SR-IOV [32, 51].
However, applications are still slowed down mainly due to contention at the last-level

cache (LLC) and main memory bandwidth. The resource contention at the LLC and main
memory bandwidth increases the overall memory access latency, significantly slowing down
the execution of different applications. Hence, it becomes critical to identify and gauge the
slowdown applications are subjected to when they are housed at multi-tenant execution
scenarios. As a major step towards solving this problem, prior approaches try to precisely
estimate the amount of slowdown each application which is subjected to in multi-tenant
execution scenarios [16, 58].

2.2 Limitations of the State-of-the-art Approach

Broadly, state-of-the-art approaches that try to estimate slowdown are classified into two
different categories – static approaches that require a priori knowledge about the appli-
cations executing and dynamic approaches which can perform slowdown estimation for
unknown applications. In this section, we enumerate the limitations of the state-of-the-art
static and dynamic approaches that try to solve this problem.

2.2.1 Static Approaches. Prior static approaches like Bubble-Up [40] and Cuanta [24] have
shown to be effective at generating precise performance predictions at co-located execution
scenarios with high accuracy. However, there exist several primary limitations of the work,
including requiring a priori knowledge of application behavior and the lack of adaptability
to changes in application dynamic behaviors. These limitations restrict the possibility of
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Bubble-Up [40] POPPA [16] ASM [58] FST [23] Caliper

Low overhead ✓ ✓
No additional hardware ✓ ✓ ✓
No offline profile ✓ ✓ ✓
Estimation error 7% 45% 20% 30% 4%

Table 1. Comparison between Caliper and other interference estimation techniques

deploying such static approaches for a variety of datacenter infrastructures which encounter
unknown applications on a regular basis. (e.g., private datacenters and public clouds)

2.2.2 Dynamic Approaches. Another class of prior works, that does not require a priori
knowledge, has attempted to estimate slowdown of applications due to shared cache capacity
and/or memory bandwidth interference [16, 58, 68]. The most recent prior work by Breslow
et al. [16] is software based that utilizes a technique called POPPA. The main motivation
behind POPPA towards estimating slowdown is based on modeling interference as a ratio
of solo and co-located execution performance. While co-located application performance
can be directly measured at runtime, it is challenging to estimate solo performance of an
application while running with co-runners simultaneously. Towards obtaining an estimate
of solo performance, POPPA periodically pauses all co-running applications for a very
short time except one application repeatedly at fixed time intervals as depicted in Fig 1a.
The pause periods allow it to monopolize system resources and (briefly) match its solo
performance. POPPA has several limitations as it suffers severely from low accuracy and
high overheads especially as the number of application contexts increases.

On the other hand, there is a class of literature that has attempted to tackle the problem of
estimating slowdown at runtime by utilizing novel hardware to track application interference
among individual processor subsystems, which are taken together to model the overall
interference of the applications [22, 23, 42, 58]. The most recent work by Subramanian et al.
presents Application Slowdown Model (ASM). This work is based on the hypothesis that
performance of each application is proportional to the rate at which it accesses the shared
cache. Hence, in order to identify the shared cache access rate, it maintains an auxiliary
tag store for each application, which tracks the state of the cache in a situation where the
application would have been running alone. Every application that is co-located within the
system utilizes this specialized hardware periodically in a round robin fashion to collect its
corresponding shared cache access rates, which in turn is utilized by ASM to estimate its
corresponding slowdown. One of the key limitations of ASM is that it requires additional
hardware support precluding it from being used as a solution on existing commodity servers.
The combination of the poor accuracy, overhead, inadequate support for multi-tenancy,

deployability, requirement of additional hardware support significantly limits the applicability
of the prior approaches. Towards satisfying these shortcomings, we design a technique that
can be deployed readily in production-grade datacenters. Our technique can accurately
estimate slowdown in executions scenarios that encounter a wide class of un-
known applications, unlike prior static approaches [24, 40] that require a priori knowledge
of the executing applications. Table 1 presents a comparison between Caliper and sever
other interference estimation techniques.
Later in Section 6.3, we experimentally evaluate each of these scenarios to illustrate the

shortcomings of the prior dynamic approaches [16, 58]. Then, we show how our proposed
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phase aware interference estimation technique is able to estimate slowdown accurately with
negligible overhead even when the number of simultaneously executing applications is up to
16 contexts as existing in modern datacenters.

3 OVERVIEW OF CALIPER

In this section, we describe Caliper, a runtime system for estimating interference at multi-
tenant execution environments.

Goal. The design goal of Caliper is to accurately estimate the slowdown of an application
at runtime. To achieve this, we need to gauge the performance of the application running
with co-runners, Perf(co−run), as well as the performance of the application when it is
running alone, Perf(solo−run) during runtime. Using these quantities, the slowdown of the
applications can be easily estimated by the following Equation 1.

slowdown = Perf(co−run)/Perf(solo−run) (1)

We have utilized Instructions Per Cycle (IPC) as the metric to quantify performance.
Perf(co−run) from equation 1 is the IPC of the application during co-location and is
directly measured when the application is running along with the co-runners during runtime.
Perf(solo−run) is the solo execution performance of the application. IPC can be measured
easily and cheaply on commodity processors. A wide body of prior interference estimation
techniques utilizes IPC as their primary metric to quantify performance [16, 25, 58]. For
even latency-sensitive applications, a prior study from Google leveraged the CPI (Cycles
Per Instructions) metric as a performance indicator [69]. Although the metric may not be
highly accurate for some applications, it is used to only guide the performance estimation.

Approach. The primary objective of this study is to be able to precisely estimate
Perf(solo−run) even during the presence of co-runners at runtime. To achieve this goal,
we introduce a software technique, called micro-experiment. A micro-experiment is a
short-lived runtime period for a few milliseconds during which an experiment
is run to collect a measurement of interest. Our runtime system performs micro-
experiments by opportunistically pausing the execution of an application’s co-runners for a
small amount of time so that the resource contention is eliminated temporarily in the system.
The result of such a micro-experiment represents an accurate estimate of the application’s
solo execution performance and this estimation along with Perf(co−run) (direct performance
measurement of an application when it is run together with other applications) can be used
as a basis to obtain the slowdown at runtime.

Challenges. To keep the cost of the estimation process low, we need to address a key
challenge. A recent prior study that periodically pauses co-running applications to estimate
the performance degradation has been shown to cause non-negligible overheads [16]. This is
due to the following reasons:
(1) Frequent pausing can disturb forward progress of the applications due to the execution

stalls.
(2) Pausing an application evicts its entries present in hardware caches, TLBs, BTBs, etc.

This exacerbates the performance overhead problem.
(3) As the number of cores in a server increases, more applications (or VMs) can be housed

in servers. Under such circumstances, periodically pausing every co-running application
will increase the effective time for which individual applications is paused. Hence, a

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Caliper: Interference Estimator for Multi-tenant Environments Sharing Architectural Resources1:7

Co−running

Fixed interval

Solo−running

Paused

Pausing time

App 2

App 1

App 3

(a) POPPA [16]

App 1

Time

IP
C

Phase change

Co-running

Solo-running

Paused

Steady phase Steady phase

App 2

App 3

App 1

App 2

App 3

(b) Caliper

Fig. 1. Interference estimation by POPPA [16] vs. Caliper

naive technique like periodic pausing becomes an unsuitable solution for operation at
scale.

Thus, it is essential to identify when micro-experiments need to be triggered. In this study,
we overcome this challenge by utilizing phase boundaries as the triggers for conducting micro-
experiments. The key observations that led towards utilizing phase boundaries as triggers
are as follows. First, the execution behavior of applications does not drastically change
within a single phase. This means that we do not need to estimate slowdown by performing
micro-experiments within a steady phase. Second, we observe that the number of phase
changes is not large in most applications, as also observed by previous works [21, 26, 56]. The
majority of applications have a very few phases spanning over an execution time which range
from a few minutes up to half an hour [46]. It gives us an opportunity to opportunistically
conduct our micro-experiments technique so that we are able to avoid excessive pauses for the
common case where applications have very few phase changes. Keeping these observations
in mind we utilize a continuous monitoring system that performs online phase detection
identifying phase changes for applications during runtime.

Fig 1b illustrates how Caliper estimates the slowdown by using micro-experiments. When-
ever there is a phase change, we perform a micro-experiment by pausing all the co-running
applications giving an opportunity for the un-paused applications to eliminate the resource
contention. Then, we are able to measure Perf(solo−run) for the application without the
resource contentions. However the most recent work that tries to estimate slowdown during
runtime [16], pauses the co-running applications in a periodic fashion as shown in Fig 1a. We
have conducted micro-experiments using 75 milliseconds as a pause period. The parameter
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is empirically determined in our testbed to monopolize architectural resources during that
time. Section 6.2 talks in detail about the choice of our pause period. As a result, we can
estimate the slowdown with negligible overheads of less than 0.5% for most of the situations.
We will discuss the parameter sensitivity in the evaluation section.

While performing micro-experiments, our runtime estimates Perf(solo−run) of an appli-
cation at every phase boundary. We aggregate the estimation of slowdown at every these
individual phases of the application to calculate the slowdown for the entire execution of
the application as shown by Equation 2.

Perf(solo−run) =
IPC(1) × T(1) + IPC(2) × T(2) + ....+ IPC(n) × T(n)

T1 + T2....+ Tn
(2)

where, Perf(solo−run) is the estimated IPC of solo execution of an application, IPC(i) is
estimated IPC of solo execution of the application during phase i, T(i) is the time for which
the application remains in phase i and n is the total number of phases in the application.

4 APPLICATION PHASE BEHAVIORS

In this section, we describe phase behaviors of applications in multi-tenant execution
environments. Traditionally, phases can be defined as intervals within the execution of
a program with similar behavior [26]. Phase changes typically manifest themselves as
observable changes in execution behavior of applications. Although there have been many
efforts to detect phase changes of a single application via performance monitoring units
(PMUs) [21, 26, 31, 56], it is challenging to precisely identify phase boundaries in multi-tenant
environments. This is because the PMU-based measurements of individual applications in
multi-tenant environments are affected by the behavior of co-running applications. Prior
techniques are unreliable when multiple applications are simultaneously running and hence
cannot be directly applicable to our runtime system.

4.1 Two Classes of Phase Changes

As a first step towards detecting phase changes in co-located environments, we taxonomize
phases detected by PMUs (e.g., as shifts in an application’s CPI) as falling into one of two
classes – endogenous phase changes that result from an application’s innate behavior and
exogenous phase changes that result from co-running applications. Thus, the goal of our
runtime system is to accurately identify endogenous phase changes while minimizing the
detection of exogenous phase changes. This is critical as exogenous phase changes are false
positives incurring unnecessary micro-experiments. It results in increasing the overhead of
our runtime system. In the next subsection, we investigate the causes of exogenous phase
changes in further detail.

4.2 Characteristics of Exogenous Phase Changes

To study the characteristics of exogenous phase changes, we observe PMUs when an appli-
cation is executing along with its co-runners. Through these observations, we identify two
critical reasons contributing to exogenous phase changes.

Fluctuation. PMU-based measurements of a single phase are a set of discrete, time series
based, numerical quantities that lie between a range possessing minuscule variation as shown
in Fig 2 (a). However, in the presence of co-runners, PMU-based measurements belonging
to a single phase of the same application fluctuate a lot. In such scenarios, some of the
PMU-based measurements lie in the range of a different phase, making it challenging to
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phase 2

phase 1
phase 1

colocated phase co-running application's phase
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range

solo phase

phase 2

phase 1

phase 2

(a) (b) (c)

Fig. 2. (a) Solo Execution of application. (b) Fluctuations in PMU type during co-location. (c) Co-phase
interference during co-location

determine phase boundaries. Fig 2 (a) represents the execution of an application when it is
running alone. Fig 2 (b), represents the execution of an application when it is executing along
with a co-runner. From Fig 2 (b), we can clearly see that some PMU measurements from
phase 1 lie in the range of the PMU measurements from phase 2 and vice versa. This makes
it challenging to identify phase boundaries. We have observed this phenomenon especially
with PMU measurements corresponding to micro-architectural entities like last-level cache
misses that are shared by multiple cores.

Co-phase interference. Phase changes in one application can cause changes to other
co-running applications. We call this phenomenon as co-phase interference. Fig 2 (c), again
represents the execution of an application when it is executing along with a different co-runner.
From Fig 2 (c), we can clearly see that the change in PMU measurements corresponding to
co-phase interference is difficult to be distinguished from endogenous phase changes.
Our goal here is to build a robust phase aware online runtime system that detects

endogenous phase changes while minimizing the detection of exogenous phase changes. This
is because triggering micro-experiments during exogenous phase changes is undesired as
they will result in increasing the performance overhead due to pausing of co-runners. In
some situations when interference is strong enough, our phase aware online runtime system
triggers phase changes even for exogenous phase changes. This could potentially increase the
overhead of our system by triggering frequent micro-experiments. However, the occurrence
of such events are very infrequent which is evident from the negligible overhead incurred by
our system as shown in Section 6.2.

5 IDENTIFYING PHASE CHANGES DURING CO-LOCATION

The primary goal of Caliper’s phase detection approach is to detect endogenous phases (true
positives) while ignoring exogenous phases (false positives) at runtime. For this purpose,
we propose a PMU-based mechanism which identifies the best PMU that can be utilized
for phase detection. Identifying the best PMU types is an offline step that is undertaken
once. We then utilize the identified PMUs to detect phase changes during runtime. This is
an online step that utilizes a continuous monitoring infrastructure.

For the offline step, we first try to identify the representative PMU types which accurately
detect every single endogenous phase change while neglecting exogenous phases. In addition
to that, the extracted PMU types should be generic. In other words, it should be able to
detect endogenous phase changes even for an unknown application whose phase behavior
has not been witnessed before. For this purpose, we first assess each PMU type, to detect

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:10 RS Kannan et al.

Phase 2

Phase 3

P
M

U
 m

e
a

s
u

re
m

e
n

ts

Phase 1

Executed instructions

solo-run

Annotated phase 

Endogeneous phase 

Exogeneous phase C
o

m
p

a
ri
s
o

n
 s
o
l
o
-
r
u
n

 w
it
h

 c
o
-
r
u
n

Executed instructions

P
M

U
  
A

 m
e

a
s
u

re
m

e
n

ts

co-run

Executed instructions

P
M

U
 B

 m
e

a
s
u

re
m

e
n

ts

co-run

Executed instructions

P
M

U
 C

 m
e

a
s
u

re
m

e
n

ts

co-run

Fig. 3. Comparing phases during co-located execution with phases present in solo execution

phase changes for a training set of applications. We then cross validate to examine its
ability to detect endogenous phases and ignore exogenous phases for unknown applications.
This determines the generality of each PMU type. Based on the ability of each PMU type,
we choose the best PMU type.

The initial step in this offline process is to carefully choose our training set of applications
to cover a wide range of contentiousness, sensitivity and phase changing attributes [60].
The list of training applications is shown in the first column of Table 2. We use astar

as our training co-runner which is cross-validated in our evaluation under section 6. The
application astar from SPEC CPU2006 is known to be both contentious and to have
numerous and rapidly changing phases [60], which can train our model to be resistant against
both fluctuations as well as co-phase interference. With these pointers, we undertake the
following three-step approach to extract the set of PMU types that can be utilized for phase
detection.

(1) Comparing PMU measurements during co-run with solo execution. We
execute the training set of applications alone to obtain PMU measurements during solo
execution. We manually annotate the endogenous phases present in each of the training set
of applications.

We then collect PMU measurements for each application present in training set during co-
location. By using the PMU measurements during co-location, we verify for each PMU type
its ability to detect endogenous phases by comparing the timestamps corresponding to the
actual phase changes that happen during solo execution (from the annotated phases during
previous step). This process is illustrated in Fig 3 as we observe that the measurements for
PMU A detect all the two endogenous phases present which are confirmed by the annotated
solo execution of the application. However, the measurements for PMU B could not detect
any endogenous phase changes. It just detects an exogenous phase change which is not
desired. With the PMU C, it detects only an endogenous phase chase, but misses the other
endogenous phase. So, the PMU type A is resilient for the application to detect phase changes
in multi-tenant environments. We performed above process for 18 different PMU types.

(2) Obtaining PMU scoreboard. We then quantify the effectiveness of each PMU
type that was successful in identifying phase changes during the previous step (1). This
quantification helps in selecting the best PMU type that detects every possible phase change
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Fig. 4. Overview of PMU scoreboard technique

present in the system. This is done by obtaining the PMU scoreboard which will be discussed
in detail at Section 5.1.

(3) Selecting the final set of PMU types. From observing the best PMU type for every
single application present in the training set, we obtain a single set of PMU type(s). Those
PMU types can be utilized to detect phase changes across a diverse class of application. We
describe this step in the Section 5.2.

5.1 Obtaining PMU Scoreboard

The motivation of PMU scoreboarding is to quantify the effectiveness of each PMU type.
Using this quantification, we obtain a common set of PMUs that can work effectively towards
identifying phase changes. Our PMU scoreboarding quantifies PMU types by gauging how
steep change in PMU measurements are at each phase boundary. We use a technique called
step detection to quantify steepness at each phase boundary. Fig 4 shows the overall flow for
obtaining the PMU scoreboard.

Inputs. Application and training dataset of time series PMU measurements during co-
location.

Output. Threshold of separation (δ, described below) quantifying the steepness of a PMU
type at phase boundary for an application.

Objective function. To quantify the effectiveness of a PMU type we assess the steepness
magnitude expressed by PMU measurements during phase change (higher variation means
PMU type distinguishes phase boundaries significantly better).

Methodology. The steepness is obtained by performing the step detection methodology.
Step detection scheme is a process of finding abrupt changes in a time series signal. Internally
step detection uses a technique called finite difference method for identifying abrupt changes.

5.1.1 Step Detection by Finite Difference Method. The fundamental hypothesis of finite
difference method for identifying abrupt changes is based on the fact that the absolute
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Workloads
PMU rank

1st 2nd 3rd

astar CPI branch L1-D load miss
bzip2 LLC store miss CPI L1-D load miss
cactusADM L1-D load miss L1-D load CPI
dealII CPI L1-D load branch
mcf L1-D load miss CPI LLC load
milc LLC store miss L1-D load branch
xalancbmk LLC store miss LLC load L1-D load
tonto L1-D load miss branch CPI

Table 2. PMU types ordered by their effectiveness

difference between subsequent time-series measurements is very high at the exact point
where the abrupt changes occur. Phase detection merely translates into Identifying the exact
point where that particular abrupt change has happened.
Mathematically, the finite difference of a time series signal is the rate of change in the

individual elements. We implement the finite difference method by performing pair wise
difference of subsequent elements present in the time series using the following formula :-

Y ′ =
Yj+1 − Yj

∆T
Y ′
j = Yj (for 1 < j < n− 1)

where Yj is the jth points present in the time series, n being the number of points, ∆T
being the difference between the number of timestamps for time series values. The result
highlights the drastic change by showcasing a high value at the point where phase changes.
Figure 4 clearly illustrates this where we can see a sharp increase in the PMU measurement
at time T1 (at the point Y9 ). Its corresponding finite differential value is very high at point
Y ′
8 . Hence, the result of finite difference method is a set of differentials similar to the Y ′

points shown in Figure 4.
The subsequent step is to distinguish Y ′

8 from the other Y ′
j points. For this purpose we

use a moving window approach. We utilize a window size of 5 based on our observations
that a single phase lasts at least for 5 seconds [18, 30, 31, 36, 52]. Our continious monitoring
infrastructure collects measurements once every second similar to most state of the art
approaches [16, 40, 68]. At every point in the moving window we obtain the mean and
standard deviation of the current window. If the latest element in the window is three
standard deviations below or away the mean, then we conclude that there is an abrupt
change at that particular time [1, 37]. Finally, we obtain all such abrupt changes (δs). The
lowest numerical value of each such abrupt change obtained by step detection is returned
as the threshold of separation δ for a PMU type that is being utilized to perform phase
detection for an application. For the example given at Fig 4, the value of δ is the minimum
of the value of δ1 and δ2. This delta value becomes useful to rank individual PMU types
which is explained in the next section.

5.2 Ranking and Selecting PMU Types

In order to choose appropriate PMU types for identifying endogenous phase changes, we
rank PMU types for every single application using the δ value (threshold of separation)
obtained from the PMU scoreboarding technique. From that, we choose the PMU type that
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Fig. 5. Phase changes triggered by PMU types when running with astar. Single PMU type is insufficient
to detect phase changes

is capable of detecting endogenous phases across all the applications. In this paper, we have
shown the top 3 PMU types in Table 2 for each application that are ranked using the δ
value.

However, an observation from our training experiments whose results as depicted in
Table 2 shows that no single PMU type can detect phase changes across all the training set
of applications. In other words, there can be a situation where an architectural resource that
can detect phase changes on an application could fail to detect phase changes completely on
a different application. We illustrate this hypothesis based on a real-world example.
Fig 5 shows an example where a single PMU type will not be able to identify phase

boundaries across two different applications. Each application requires different PMU types
to precisely detect phase changes. In other words, mcf requires L1-d load misses while milc
requires LLC store misses and vice versa fails. The x-axis indicates the cumulative number
of instructions executed as time progresses. The left y-axis featured as yellow (diamond)
line shows the CPI of the applications when running alone and the right y-axis and the
blue (circle) and red (dashed) line show the selected hardware performance monitors for the
application when running with three instances of astar as co-runners.
From Fig 5 (a), we find out that the PMU type, L1-d cache load misses, can effectively

detect phase changes of mcf in co-located environments. This is not true for the application
milc as the same PMU type L1-d cache load misses fails to detect phase changes as shown
in Fig 5 (b). These results motivate the need for multiple PMU types to capture phase
changes across a variety of applications. To achieve this, we undertake an approach where
we observe a set of architectural resources (CPI, LLC store miss, and L1-D load miss) in
contrast to a single resource. Moreover, to avoid missing endogenous phase changes, we
use a conservative approach to trigger a micro-experiment even if one of the PMU types
out of the three detects a phase change. This is because failing to detect endogenous phase
changes will significantly reduce the accuracy in estimating IPC of solo execution. On the
other hand, predicting a non-existent phase change causes only negligible overheads when
the occurrence of such mispredictions is low. Additionally, the counters CPI, LLC store
miss, and L1-D load miss covers charecteristics of applications that are both sensitive and
insensitive towards shared cache contention. Hence, these counters prove to be effective in
detecting phase changes even for a wide variety of unknown applications irrespective to the
nature of their inputs.
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Processor Microarchitecture Kernel Hypervisor

Intel Xeon E5-2630 @2.4 GHz Sandy Bridge-EP 3.8.0 KVM-QEMU v2.0
Intel Xeon E3-1420 @3.7 GHz Haswell 3.8.0 KVM-QEMU v2.0

Table 3. Experimental platforms

5.3 Using Selected PMU Types for Online Phase Detection

Online phase detection during runtime can be performed using the PMUs that we had
identified during the offline step. Whenever an application is execution, our continious
monitoring runtime infrastructure monitors each PMU type identified during the offline step.
It performs online step detection on each PMU type to detect the presence of any significant
variation in the PMU measurements.

Caliper can be summarized as a continious monitoring runtime system that estimates
slowdown of an application during runtime accurately.Caliper performs micro-experiments, a
short-lived experiment to collect a measurement of interest, by opportunistically pausing the
execution of co-running applications for a small amount of time so that resource contention
can be temporarily eliminated in the system. The result of such a micro-experiment represents
an accurate estimate of the solo performance for the application in that small period.
Performing micro-experiments frequently causes huge execution overheads. Hence, it is

essential to identify when micro-experiments need to be triggered. In this study, we overcome
this challenge by utilizing phase boundaries as triggers for conducting micro-experiments.
This is because the execution behavior of applications does not drastically change within a
single phase. Hence a single micro-experiment for a phase is sufficient to characterize the
execution behavior of an application for that phase. Adding to that, the number of phase
changes is not many in most applications. We utilize Performance Monitoring Units (PMUs)
to detect phase changes during runtime. We perform offline analysis on training data to
identify the best PMU types. Our online runtime system uses those PMU types during
runtime to detect phase changes.

6 EVALUATION

6.1 Methodology

Infrastructure. We evaluate Caliper on two commodity multicore systems summarized in
Table 3. We use Linux KVM as the hypervisor and run applications on virtual machines
(VMs) [35] because running virtual machines is a standard way for cloud providers to
isolate infrastructure among different customers. Hence our infrastructural setup consists of
co-locating multiple virtual machines (VMs) where each VM belongs to a different user.
Each virtual machine has 4GB of main memory and 16GB disk. We use the Ubuntu

12.04 distribution as guest operating systems with Linux kernel 3.11.0. There is no change
in the execution characteristics of the applications while executing them using virtualized
environments. We take advantage of perf tool to collect hardware performance monitors
while observing applications.

Applications. To evaluate the effectiveness of our technique, we use the benchmarks
from SPEC CPU 2006 [29] with ref inputs, NPB - NAS Parallel benchmarks [12]. In
addition to that, we execute emerging applications from SiriusSuite [28] and DjiNN&Tonic
suite [27] in batch mode. Sirius suite and DjiNN & Tonic suite contain a class of applications
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Benchmarks Class of applications AWS use cases [5]

Sirius Suite Machine learning NTT Docomo (voice recognition) [6]
DjiNN & Tonic Deep neural network PIXNET (facial recognition) [8]
SPEC 2006 General purpose & Scientific Penn State [7]
NPB Parallel computing workloads NASA NEX [11]

Table 4. Benchmark used in evaluation
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Fig. 6. Accuracy (in percentage error) of SPEC CPU2006, NAS Parallel Benchmarks, Sirius Suite and
Djinn&Tonic suite while estimating slowdown when 4 applications are co-located.

which implement state-of-the-art machine learning and computer vision algorithms. It has
been a common trend to execute such applications in modern public clouds where multiple
applications are oversubscribed in the same server [5–8, 10, 43, 45]. We can clearly see that
the benchmark suites that we have utilized to evaluate Caliper are similar to the applications
that are being executed in state-of-the-art public cloud computing environments (e.g.,
Amazon web services [67]). Table 4 enumerates the benchmark suites, application domain
and the respective use cases for the applications present in these benchmark suites in a
public cloud execution environment like Amazon Web Services (AWS). Also, SiriusSuite [28]
and DjiNN&Tonic suite [27] have stemmed into a startup that builds conversational artificial
intelligence systems for banking sector [3].

6.2 Caliper – Accuracy and Overhead

In this section, we evaluate the efficacy of Caliper. We discuss the accuracy in estimating
slowdown by Caliper and its overhead experimentally. Accuracy calculated by comparing
the estimated slowdown from our runtime system with the actual slowdown, a metric that
is consistently followed by existing literature that focuses on estimating slowdown [16, 22,
23, 58].

Fig 6 shows the accuracy when Caliper is trying to estimate slowdown when 4 applications
are co-located on a single server. The experimental setup here consists of four broad
execution scenarios each based on the type of co-running application that we have taken
into consideration represented in the y-axis of Fig 6.

Single vCPU. The single-threaded benchmarks from SPEC CPU 2006, Sirius Suite,
Djinn&Tonic are evaluated where for each experiment the observed application executes in
a single VM pinned to a single vCPU. The PMU-based measurements are collected from the
vCPU at which the application is executing which directly corresponds to the performance
of the application.

Multiple vCPU. The multi-threaded benchmarks from NPB are evaluated where for each
experiment the observed application executes in a single VM pinned to two vCPUs. Here,
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SPEC NPB Sirius

Overhead Phase changes Overhead Phase changes Overhead Phase changes
(%) (per min) (%) (per min) (%) (per min)

main-app 0.65 1.58 0.35 0.38 0.25 0.20

colo-app 0.74 0.91 0.45 0.75 0.44 0.80

Table 5. Execution time overhead and number of phase changes

the performance of the application is the cumulative values of the PMU-based measurements
obtained from each vCPUs at which the application is executing.
Individual cells in Fig 6 present the difference (error) in the estimated slowdown versus

the actual slowdown (Light is good and dark is bad). For each experiment, we execute 3
instances of a single type of co-runner libquantum, mcf and milc, simultaneously along
with 1 instance of the application on the x-axis. The mix co-runner is a mix of 3 different
co-runners, libquantum, mcf, and milc, alongside the applications on the x-axis. We have
used libquantum, mcf and milc as co-runners as from our experiments and through prior
work [60], we found out that these were the top 3 applications that exhibit significant
activities towards shared architectural resources including last-level cache and memory
bandwidth. Hence, accurately estimating slowdown during the presence of such co-runners
was a big challenge for us[60]. Our experiments to estimate the accuracy of slowdown and
runtime overhead takes into account all the 4 applications executing in the system. We run
each benchmark three times and take the mean to minimize run to run variability. We check
to see if there is any phase change every second owing to the observation that phases are
consistent for a few seconds. During every phase change, micro-experiments are performed
for 75ms to eliminate resource contention during observation. We obtain the value 75ms
empirically by performing a sweep for different quantities optimizing for reduced overhead
and increased accuracy. Details will be discussed later.

Accuracy. From Fig 6, we can see that Caliper shows very low error rates across all the
applications even when running with multiple instances of cache contentious co-runners like
libquantum. The average error rate when co-locating with such contentious co-runners is
around 4%. We observe that 95% of our applications have errors less than 10% and the
worst case error is 12% in our technique, whereas the worst case error of prior techniques is
up to 60% (details presented in Section 6.3 of evaluation). We also observe that the error
in estimating interference using Caliper remains consistent regardless of the nature of the
co-runners. This is indicative of two things (1) accuracy with respect to detecting phases (2)
precision of micro-experiments in detecting per phase interference. In the next section, we
discuss the importance of having a robust phase detection methodology and its impact on
the accuracy of of estimating interference.

Overhead. To enable Caliper on production systems, we have to achieve low overheads so
as to minimize the interference to running application on the servers. Table 5 indicates the
overhead that is incurred by Caliper while estimating slowdown. We evaluate the overhead
at the same experimental setup under which we had evaluated accuracy. From Table 5, we
can clearly see that the overhead of the main observed application, as well as the average
overhead of the co-running applications, remain less than 1% in most of the cases. On
average, the overhead of Caliper’s runtime system is around 0.6%. Similarly, we also see
that the number of phase changes per minute is also very less. On average, there is a single
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Fig. 7. Accuracy and overheads for Caliper under different pause periods.
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Fig. 8. Estimation error: Caliper vs. state-of-the-art software (POPPA [16]) and hardware (FST [23],
PTCA [22], ASM [58]) techniques for estimating interference

phase change per minute. This indicates that each application is paused for a few hundred
milliseconds every minute making the overhead extremely negligible.

Sensitivity of the pause period. Towards obtaining an optimal pause period for operating
Caliper, we performed a sensitivity study. The results of this study is shown in Fig 7. From
figures 7a and 7a, we clearly observe two trends. First, the accuracy of estimating slowdown
increases as the pause periods increase up to 75ms. Then there is no benefit in increasing the
pause periods. Hence we have utilized 75ms as an optimal pause period for our mechanism.
Second, the overheads do not change drastically as we increase the pause periods. This is
because Caliper’s frequency at which it pauses the co-runners is too low causing negligible
impact in the execution time overheads.

6.3 Comparison with Prior Work

Accuracy. Fig 8 shows the accuracy of Caliper as compared to the accuracy of POPPA [16],
FST [23], PTCA [22], and ASM [58] for the benchmarks present in SPEC CPU 2006, NPB,
Sirius suite and Djinn&Tonic suite. POPPA works by periodically pausing all co-running
applications except one for a very short time at fixed time intervals. The aggregated
performance of the applications during the pause periods is the key measure by which
slowdown is estimated. Through these experiments, we can see that the estimation error is
much lower for Caliper than POPPA [16]. The mean error of POPPA is 13.23%. On the
other hand, our technique shows much lower error rates averaging around 3.77%.
It is challenging to estimate the slowdown when running with contentious co-runners

as they quickly pollute the shared last-level cache and excessively use the shared memory
bandwidth. One of the main reasons for POPPA’s poor accuracy is that the pausing time
(3.2ms) is too short to capture solo performance of an application. This is because the shared
cache would not be warmed up to be containing the entire working set of the application
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Fig. 9. Phase level behavior of Caliper for mcf and milc when running with co-runners, 3 libquantum

(a) and mcf (b), respectively. Micro-experiments are triggered effectively at phase boundaries.

which is to be measured. As a result, the measured application would spend most of its
pausing time filling in the shared cache, giving much less time to observe how the application
performs when it monopolizes computing resources. On the other hand, Caliper performs
micro-experiments which pauses co-runners only when discovering phase boundaries. This
enables us to observe the solo execution performance for a longer time without worrying
much about the overhead caused due to pausing for additional time. Hence, we are able to
achieve high accuracy in estimating slowdown at runtime.

We also observed that the state-of-the-art hardware enabled approaches towards estimating
slowdown [22, 23, 58] showed a high error rate. Just like the other software approaches,
state-of-the-art hardware enabled approaches utilizes cache access rates of applications
during solo execution time to determine slowdown of an application. Cache access rates
of applications during solo execution is again obtained by periodically pausing co-running
applications in a round robin fashion. Hence the limitations of the prior software approaches
hold good for the hardware approaches too. The mean errors of POPPA, FST, PTCA, and
ASM are 11.04%, 28.28%, 38.42% and 9.98% respectively. From these results, we were able
to see that Caliper can outperform even the state-of-the-art hardware enabled approaches
present in the literature.

Multi-tenancy. To evaluate the effectiveness of the state-of-the-art hardware or software
based approaches and Caliper towards supporting multiple tenants, we increase the number
of executing application contexts to 8 applications and 16 applications. Fig 8 shows the
average accuracy of Caliper as compared to POPPA for SPEC CPU2006 and NPB when
co-locating with libquantum. We can see that Caliper’s accuracy is around 3.95% when
co-locating with 16 applications in contrast to POPPA [16], FST [23], PTCA [22] and
ASM [58] whose error is around 22%, 40%, 41% and 19% respectively. The low accuracy
of the prior techniques is because as the number of co-runners increases, the shared cache
becomes much more polluted due to the contention. POPPA even on such situations pauses
for the same amount of time which is too less for the shared last-Level cache to warm
up so as to exhibit the performance corresponding to solo execution. Hence, its slowdown
estimation becomes highly inaccurate. Similarly, hardware techniques perform sampling in
a round robin fashion using their proposed specialized hardware whose pressure increases
as the number of co-running application increases. However, Caliper utilizes a phase-aware
approach that performs micro-experiments at adequate amounts of time during the right
time to capture the solo execution characteristics of every phase accurately.

Phase analysis. Now, we try to visualize the effectiveness at which Caliper utilizes its
a robust phase detection technique in order to achieve high accuracy and low overhead
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milc (4) gobmk(1) hmmer(1) perbench(1) astar(7) namd(1) pos(1) chk(1) calculix(118) dealII(132)

libquantum 0 0 0 0 2 0 0 0 257 98
mcf 6 0 2 0 3 1 1 1 412 49
milc 5 0 1 0 2 0 0 0 353 33
mix 2 0 1 0 2 0 1 1 251 98

Table 6. Number of false positives incurred in Caliper runtime system. For each benchmark, the number
of endogenous phases of the solo-run is represented in parentheses. (E.g., milc (8) means that milc has
8 endogenous phases.) First column contains co-runners.

in estimating slowdown. Toward illustrating this, we analyze the phase level behavior
of a selected set of phasy applications to show Caliper’s capability towards performing
micro-experiments at every single phase change.
Firstly, we select two applications, mcf and milc to analyze the execution behaviors.

These applications possess a significant number of phase changes. As co-runners, we use
libquantum and mcf, respectively. Fig 9 (a) shows the execution behavior of mcf with respect
to time. In each graph, the yellow line depicts the measured CPI of the application when
running alone and the red line shows the CPI estimated by Caliper when the application
is running with 3 instances of libquantum or mcf. We can see that Caliper can effectively
trace the phase changes. The closer the red line is to the yellow line, the smaller the error.
The error in estimating slowdown is 0.51% over the entire run. For milc, Fig 9 (b) presents
that our technique can effectively trace all of its phase. The error while estimating slowdown
is 2.52%.
Secondly, we evaluate how many false positives are incurred by our technique. Table 6

illustrates the number of falsely detected phase changes by Caliper. The first row shows
the benchmarks for which we have evaluated this experiment. We have shown only ten
benchmarks in this table in the interest of space constraints. The numbers present in the
bracket after the benchmarks show the endogenous phase counts (true positives) when
running alone. The first column shows the co-runners along which the benchmarks present
in the first row have been evaluated. From our experiments, we observed that the results
for most of the benchmarks were similar to gobmk, hmmer, namd, pos, chk. There was just
one phase, and Caliper was able to detect that phase. Additionally, detecting false phases
were a rare occurrence consuming negligible overheads. However, we had a few interesting
observations for the benchmarks calculix and dealII. The phases of these applications
are very irregular and contain spikes once every few seconds. Each of these situations
where spikes occur triggers a phase change resulting in a larger number of false positives.
Additionally, another interesting observation from our experiments was that there were
more false positives when mcf was a co-runner. This is because mcf has many phase changes
introducing many more false positives due to co-phase interference. However, the frequency
at which Caliper’s runtime system triggers phase changes is so low that our overhead remains
lesser than 1% for most of the time.

Overhead. Fig 10 compares the overhead up to 16 application contexts for Caliper and
the state-of-the-art software approach POPPA. We can clearly see that as the number of
application context increases, the overhead of Caliper increases negligibly. However, this is
not the case for other software approaches. This is due to the fact that, POPPA performs
periodic pauses. As more applications are co-located, the effective time for which applications
are paused increases as POPPA need to pause every application for the same amount of time
for each of the co-runner. However, Caliper pauses applications only during phase changes
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Fig. 10. Overhead: Caliper vs. POPPA

(which are comparatively infrequent). Hence, the overhead incurred by Caliper’s runtime
system is lesser by an order of magnitude.

Fig 11 illustrates the reasons behind POPPA’s higher execution time overhead. Fig 11 (a)
compares the performance of POPPA and Caliper in an environment without any slowdown
estimation runtime system. We can clearly see that the increased execution time overhead of
POPPA is due to the spikes present in CPI due to frequent pausing of co-runners periodically
by POPPA to estimate slowdown. However, Caliper performs micro-experiments rarely (once
every phase). Hence, there are no periodic spikes as seen in POPPA. Caliper’s execution
time overhead also is negligible.
We have experimentally verified the reasons for the increased overhead and is clearly

shown in Fig 11 (b), (c), and (d), respectively. As POPPA performs periodic pauses, it incurs
addition warmup overheads for the micro-architectural components present in the system.
At the end of every pause period, the system refills the micro-architectural components
(cache, branch target buffer, TLB etc.) that would have been flushed during its pause period.
This gets translated directly into increased execution time overhead.

Fig 11 (b), (c), and (d) illustrate the underlying causes for this phenomenon. From
Fig 11 (b), we can see that the cache misses increases whenever POPPA pauses co-runners
in the system. However, it remains on unaffected for Caliper reasoning out its negligible
overhead. Similarly, from Fig 11 (c) and (d), we can see that when POPPA frequently pauses
applications, branch misses and TLB (transition look aside buffers) misses increases. This in
on similar lines that micro-architectural components like branch target buffer (BTB), TLBs
are flushed out frequently during pausing by POPPA. We can see that frequent pauses by
POPPA increases the cache misses, TLB misses and branch misses by 11.6%, 5.7% and 7%
respectively thereby increasing the runtime overhead of the execution of an application up to
10.5%. However, Caliper’s overhead, as well as misses at the micro-architectural structures,
remains less than 0.5%.

6.4 Leveraging Caliper for Fair Pricing in Datacenters

Infrastructure-as-a-service (IaaS) clouds primarily use a pay-as-you-go pricing model that
charges users a flat hourly fee for running their applications on shared servers. Customers
renting IaaS public clouds now have the capability to choose resource fragments at varying
granularity in terms of the number of virtual CPUs, the amount of memory and storage size.
Cloud service providers rely on virtualization to isolate resource fragments belonging to each
customer. However, in light of significant potential for parallelism, cloud service providers
co-locate applications belonging to different users. Since the last-level cache and DRAM
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(c) Branch misses – 5.7% increase in branch misses
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Fig. 11. Performance of micro-architectural entities when POPPA’s runtime systems are being executed
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Fig. 12. Comparison of fairness in pricing by Caliper with POPPA

bandwidth remain shared among applications running within a single server, applications are
slowed down as compared to when they run alone on the system. This increased execution
time that the application is subjected to reflects directly on the price paid by the users
under the pay-as-you-go scheme creating an unfair pricing scenario.
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To enable fair pricing in public clouds, it is essential to estimate the performance impact
that co-running applications have on an application. Identifying slowdown at runtime would
be a very useful information in this regard as it would be an appropriate indicator of influence
of co-runners on an application. Hence, such a scheme can be used as a critical substrate
upon which any pricing scheme can be built. However, such a scheme is highly dependent
on the accuracy at which fairness is estimated. Hence, achieving high accuracy in estimating
slowdown becomes critical.

We compare the unfairness that is present while utilizing the hardware enabled approaches
for pricing with our approach. We define unfairness as the price by which users are overcharged
when they are executing their applications in IaaS public clouds. We use the pricing model
proposed by Toosi et.al. [64] and apply the slowdown estimation techniques along with it so
as to calculate the resultant price. From Fig 12, we can see that is able to price applications
with 5X more fairness while pricing users using their slowdown model as compared to the
POPPA technique proposed in Breslow et al. [16]

7 RELATED WORK

There have been many prior studies to detect performance interference in a variety aspects of
architectural resources. We look first into the hardware enabled approaches and then address
the prior work that utilizes system and OS level approaches for detecting interference.

Hardware techniques: There are several approaches that try to estimate slowdown due
to contention in shared caches, memory controller and bandwidth. Nesbit et al. employed the
network fair queuing model in the memory scheduler to meet the fairness [48]. Mutlu and
Moscibroda focused on DRAM specific architectural features such as row buffers and DRAM
banks [42]. They utilized memory scheduling techniques to ensure the fairness between
multiple threads. Ebrahimi et al. extended the fairness problem in memory subsystems by
including shared last level cache and memory bandwidth [23]. This work focused on the
source incurring performance interference and proposed throttling mechanism by controlling
injection rates of requests to alleviate the contention of shared resources. Suh et al. firstly
discussed the cache partitioning scheme to efficiently use the shared resources [59]. Qureshi
et al. proposed utility based cache partitioning technique to achieve high performance [53].

Software and systems approaches: There are many efforts introducing software
frameworks and proposing the new designs of operating systems [24, 38, 40, 47, 50, 61, 68].
Q-Cloud measures the resource capacity for satisfying QoS in a dedicated server called
as a staging server and then performs placement decisions based on choosing the right
server that will be profitable to minimize interference [47]. To accurately estimate the
performance interferences without profiling on a dedicated server, Bubble-up [40] and
Cuanta [24] designed the synthetic workloads to understand the degree of interference when
co-locating applications. Meanwhile, Soares et al. studied the concept of pollute buffer in
shared last level caches to prevent filling the shared caches as non-reusable data. Their work
focused on improving the utilization of shared caches through OS-level page allocation [57].
Zhuravlev et al. extended the CPU scheduler to alleviate the some of the interferences. The
goal of this work is to schedule the threads by evenly distributing the load intensity to
caches [71]. Blagodurov et al. proposed that the scheduler needs to consider the effects of
NUMA [15]. Also, there are numerous prior studies to solve the contention problems such
as shared last level cache and NUMA by scheduling virtual machines [4, 39, 54]. Tuncer
et al. utilizes a machine learning approach to detect anomalies in HPC systems [65, 66].
They utilize the characteristics of applications that have executed before in the system to
model performance anomalies. Zhang et al. identifies contentious application behavior by
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observing the application performance at runtime using CPI [69] for both latency-sensitive
and batch applications running on datacenter. On the one hand, to detect application phases,
there are several prior studies, requiring compiler support [18, 20, 52, 56] and utilizing PMU
measurements [30, 36]. Isci et al. characterized the two different approaches for performing
live runtime phase analysis [31] which motivates us to design Caliper. However, those prior
studies could not be directly applicable due to the lack of consideration of multi-tenant
environments.

8 CONCLUSIONS

In this paper, we introduce to estimate slowdown of applications that are co-located in
multi-core systems that contend for shared cache and main memory. Caliper accurately
estimates slowdowns using phase aware micro-experiment approach which utilizes system
software tools like Performance Monitoring Units. We demonstrate the superiority of Caliper
as compared to the state-of-the-art hardware enabled approaches. We conclude finally by
illustrating the scenarios at which estimating interference at runtime would be useful by
evaluating its applicability in one such scenario.
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