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Building Applications with Microservices

Duplicated microservices
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Sharing Microservices
. Amalgamate redundant microservices
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Sharing microservices can improve resource

utilization
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How does instance sharing actually happen?

Impact on resource utilization?
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Approach in AI & ML Microservices

 Batching multiple requests!

* Requests belonging to the different
applications can be composed into a single
batch

-
Y i

App A App B App C

Sharing degree (batch size): 2

1. Djinn and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale Computers, ISCA 15
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Impact of Sharing Microservices

stage 1 stage 2 stage 3 stage 4 A” h .
1200 mage solo  ----- mage colo *- OW S arlng
Image query 1000, T I T e
(4 microservices) £ 309 | | |
= |

= = 400

oI 200 I . .

\tﬁ/ 05 500 1000 1500 2000 2500 3000 3500 4000 Dlsa”OW Sharmg

Requests served

Sharing microservices can improve resource utilization,

but the SLA can be violated sometimes
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Latency Aware Sharing — Holy Grail of
Multi-tenancy in Microservices

» What is a necessary condition?
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Enabling Sharing Microservices
» What is a necessary condition?
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Goal 1: Accurately estimate completion time for any
given request.

Goal 2: Identify slack at each microservice stage.



Towards Predicting The Execution Time

 Performance study: image recognition

We can build a simple performance model for

Al & ML mlcroserwces based on these observations
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Calculating Microservice Stage Slack

» Stage slacks are proportionally allocated from
the end-to-end latency
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2. Percentage of slack does not
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Stage Slack based Request Handling

* Prioritizing the execution with lower slack
« Dynamically batching requests based on slack
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ﬂ Reordering requests based on the slack
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Slack Forwarding

« Unused slack can be utilized later
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« It can increase the overall request slack in the
later stages of execution

 Lead to enabling higher sharing degrees
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Evaluation

« Experimental platforms
« CPU: Intel Xeon E5-2630, E3-1420
« GPU: Nvidia GTX Titan X, GTX 1080
« Each microservice run on a docker container

 Applications used (implemented on TensorFlow)

Application Description Pipelined microservices
Provides answers to queries that

IPA-Query are given as input through voice. ASR—NLP—QA
Generates natural language descri-

IMG-Query ptions of the images as output. IMG—NLF—QA

POSE-Sign Analyzes_mterroganve images AP—NLP—QA—SL
and provides answers.

FACE-Security Scans images to detect the presence FACED—FACER

of identified humans.
DETECT-Patigue D¢tccts in real time the onset HS—AP—FACED—FACER
of sleep in fatigued drivers.

Translation Performs language translation. SL QA NoSQL

 Three workload scenarios

| Applications | Shared microservices
WL1 | IMG-Query, FACE-Security, DETECT-Fatigue, POSE-Sign | QA, FACED, FACER, AP
WL2 | IPA-Query, POSE-Sign, Translation NLU, QA
I/O-IPA-Query, I/O-Sign, I/O-Translation NLU, NoSQL
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SLA: Latency Violation

» GrandSLAmM improves percentage of requests
that violate SLA

 Baseline: Executes requests in a FIFO fashion
without sharing the microservices

Bl Baseline [ Baseline + dynamic batching
I Baseline + reordering GrandSLAm
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Utilization: Throughput

« ED: Equally Division
« EDF: Earliest Deadline First
 Batch size: 30, 50, DYN
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Conclusions

« We explored a new approach to improve resource
utilization while not violating SLAs

 Three distinct contributions
« Analysis of microservice execution scenarios
« Accurate estimation of completion time at each microservice
 Guarantee end-to-end SLAs by exploiting stage level SLAs

* Future work

« Enhancing the model to handle complex execution models

 e.g., Parallel execution of multiple microservices, conditional
execution of microservices
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Expected Questions

« PLEASE LIST UP HERE
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Building Microservice DAGs
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