
GrandSLAm: Guaranteeing SLAs for
Jobs in Microservices Execution

Frameworks

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju,
Jeongseob Ahn, Jason Mars, Lingjia Tang

Transformation of Cloud Services

Microservices

Hardware
Virtualization

OS
App

OS
App

Monolithic

Building Applications with Microservices

Image Recognition Natural Language
Understanding Text to SpeechQuestion

Answering
input

Output

App: Image query (4 microservices)
- Recognizes the input image
- Generates natural language descriptions of the images
- Builds a sentence for the description
- Outputs the sentence as voice

Speech Recognition Natural Language
Understanding

Question
Answering

input

Output

App: Intelligent personal assistant (3 microservices)
- Provides answers to queries that are given as input through voice

Duplicated microservices

Low Resource Utilization

Sharing Microservices

• Amalgamate redundant microservices

Image Recognition Natural Language
Understanding Text to SpeechQuestion

Answering
input

Output

Speech Recognition Natural Language
Understanding

Question
Answering

input

Output

Stage 1 Stage 2 Stage 3 Stage 4

Image Recognition

Speech Recognition

Natural Language
Understanding Output

Output

input

input

Text to SpeechQuestion
Answering

Sharing microservices can improve resource
utilization

How does instance sharing actually happen?

Impact on resource utilization?

Approach in AI & ML Microservices

• Batching multiple requests1

• Requests belonging to the different
applications can be composed into a single
batch

App A App B App C

Sharing degree (batch size): 123
1. Djinn and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale Computers, ISCA 15

Impact of Sharing Microservices

Stage 1 Stage 2 Stage 3 Stage 4

Image Recognition

Speech Recognition

Natural Language
Understanding Output

Output

input

input

Text to SpeechQuestion
Answering

Image query
(4 microservices)

Intelligent personal
assistant
(3 microservices)

Sharing microservices can improve resource utilization,
but the SLA can be violated sometimes

Disallow sharing

Allow sharing

Allow sharing

Disallow sharing

Latency Aware Sharing – Holy Grail of
Multi-tenancy in Microservices

• What is a necessary condition?

Stage 1 Stage 2 Stage 3 Stage 4

Image Recognition

Speech Recognition

Natural Language
Understanding Output

Output

input

input

Text to SpeechQuestion
Answering

Slackstage1 Slackstage2 Slackstage3 Slackstage4

Latencyend-to-end = ∑#$%& '()*+,-)./0

The maximum amount of time, a request can spend at the stage

Enabling Sharing Microservices

• What is a necessary condition?

Stage 1 Stage 2 Stage 3 Stage 4

Image Recognition

Speech Recognition

Natural Language
Understanding Output

Output

input

input

Text to SpeechQuestion
Answering

Slackstage1 Slackstage2 Slackstage3 Slackstage4

Slackend-to-end = ∑#$%& '()*+,-)./0

The maximum amount of time, a request can spend at the stage

Goal 1: Accurately estimate completion time for any

given request.

Goal 2: Identify slack at each microservice stage.

Towards Predicting The Execution Time

• Performance study: image recognition

Input: 128x128 dimension

0 8 16 24 32
6harLng degree

0
400
800

1200
1600

La
te

nc
y

(m
s)

0 8 16 24 32
6hariQg degree

0
40
80

120
160

Th
ro

ug
hS

ut
 (4

36
)

➊
64 128 256

Input sLze
0

2000
4000
6000

La
te

nc
y

(m
s)

➋ ➌

We can build a simple performance model for
AI & ML microservices based on these observations

Estimated Time of Completion = Tcompute + Tqueuing

we use a linear regression model

0 5 10 15 20 25 30

%atch 6Lze (C38)
0

20

40

60

80

100

6l
ac

N
(%

)

ActLvLty 3ose
1atuUal LaQguage
8QdeUstaQdLQg
4uestLoQ AQsweULQg
6equeQce LeaUQLQg

App: Pose Estimation for Sign Language (4 microservices)

Calculating Microservice Stage Slack

• Stage slacks are proportionally allocated from
the end-to-end latency

1. Computation time across
stages vary by a lot.

2. Percentage of slack does not
vary much across batch sizes.

Stage Slack based Request Handling

• Prioritizing the execution with lower slack
• Dynamically batching requests based on slack

HeadTail

• Unused slack can be utilized later

• It can increase the overall request slack in the
later stages of execution
• Lead to enabling higher sharing degrees

Slack Forwarding

Leftover slackASRExecution time

ASR NLU
 SlackNLU SlackASR

Slack forwarding

1

SlackNLU
+

Leftover SlackASR

2

Evaluation

• Experimental platforms
• CPU: Intel Xeon E5-2630, E3-1420
• GPU: Nvidia GTX Titan X, GTX 1080
• Each microservice run on a docker container

• Applications used (implemented on TensorFlow)

• Three workload scenarios

SLA: Latency Violation

• GrandSLAm improves percentage of requests
that violate SLA
• Baseline: Executes requests in a FIFO fashion

without sharing the microservices

WL1 WL2 WL30
20
40
60
80

100

6L
A

vL
ol

aW
Lo

ns
 (%

)

%aselLne
%aselLne + reorGerLng

%aselLne + GynamLc baWchLng
GranG6LAm

Utilization: Throughput

• ED: Equally Division
• EDF: Earliest Deadline First
• Batch size: 30, 50, DYN

Conclusions

• We explored a new approach to improve resource
utilization while not violating SLAs

• Three distinct contributions
• Analysis of microservice execution scenarios
• Accurate estimation of completion time at each microservice
• Guarantee end-to-end SLAs by exploiting stage level SLAs

• Future work
• Enhancing the model to handle complex execution models

• e.g., Parallel execution of multiple microservices, conditional
execution of microservices

Thank You!

GrandSLAm: Guaranteeing SLAs for Jobs in
Microservices Execution Frameworks

Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju,
Jeongseob Ahn, Jason Mars, Lingjia Tang

Expected Questions

• PLEASE LIST UP HERE

Building Microservice DAGs

Microservice cluster

IMC()

NLU()

QA()

TTS()

…
…

…
…

…

ASR()

NLU()

QA()

…
…

…
…

Job A

Job B

1

ASR

IMC

NLU

QA

2 Building microservice DAG

IMC NLU QA TTS

ASR NLU QA

Job A’s DAG

Job B’s DAG

 Submitting job

TTS

