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Building Applications with Microservices
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Understanding Text to SpeechQuestion
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App: Image query (4 microservices)
- Recognizes the input image
- Generates natural language descriptions of the images
- Builds a sentence for the description
- Outputs the sentence as voice

Speech Recognition Natural Language
Understanding

Question
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App: Intelligent personal assistant (3 microservices)
- Provides answers to queries that are given as input through voice

Duplicated microservices

Low Resource Utilization



Sharing Microservices

• Amalgamate redundant microservices
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Sharing microservices can improve resource 
utilization



How does instance sharing actually happen? 

Impact on resource utilization?



Approach in AI & ML Microservices

• Batching multiple requests1

• Requests belonging to the different 
applications can be composed into a single 
batch

App A App B App C

Sharing degree (batch size): 123
1. Djinn and Tonic: DNN as a Service and Its Implications for Future Warehouse Scale Computers, ISCA 15



Impact of Sharing Microservices

Stage 1 Stage 2 Stage 3 Stage 4
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Image query 
(4 microservices)

Intelligent personal 
assistant 
(3 microservices)

Sharing microservices can improve resource utilization, 
but the SLA can be violated sometimes

Disallow sharing

Allow sharing

Allow sharing

Disallow sharing



Latency Aware Sharing – Holy Grail of 
Multi-tenancy in Microservices

• What is a necessary condition?

Stage 1 Stage 2 Stage 3 Stage 4
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Slackstage1 Slackstage2 Slackstage3 Slackstage4

Latencyend-to-end = ∑#$%& '()*+,-)./0

The maximum amount of time, a request can spend at the stage



Enabling Sharing Microservices

• What is a necessary condition?

Stage 1 Stage 2 Stage 3 Stage 4

Image Recognition

Speech Recognition

Natural Language
Understanding Output

Output

input

input
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Answering

Slackstage1 Slackstage2 Slackstage3 Slackstage4

Slackend-to-end = ∑#$%& '()*+,-)./0

The maximum amount of time, a request can spend at the stage

Goal 1: Accurately estimate completion time for any 

given request.

Goal 2:  Identify slack at each microservice stage.



Towards Predicting The Execution Time

• Performance study: image recognition

Input: 128x128 dimension
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We can build a simple performance model for 
AI & ML microservices based on these observations

Estimated Time of Completion = Tcompute + Tqueuing

we use a linear regression model
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App: Pose Estimation for Sign Language (4 microservices)

Calculating Microservice Stage Slack

• Stage slacks are proportionally allocated from 
the end-to-end latency

1. Computation time across 
stages vary by a lot.

2. Percentage of slack does not 
vary much across batch sizes.



Stage Slack based Request Handling

• Prioritizing the execution with lower slack
• Dynamically batching requests based on slack

HeadTail



• Unused slack can be utilized later

• It can increase the overall request slack in the 
later stages of execution
• Lead to enabling higher sharing degrees

Slack Forwarding

Leftover slackASRExecution time

ASR NLU
 SlackNLU  SlackASR 

Slack forwarding
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SlackNLU 
+ 

Leftover SlackASR 

2



Evaluation

• Experimental platforms
• CPU: Intel Xeon E5-2630, E3-1420
• GPU: Nvidia GTX Titan X, GTX 1080
• Each microservice run on a docker container

• Applications used (implemented on TensorFlow)

• Three workload scenarios



SLA: Latency Violation

• GrandSLAm improves percentage of requests 
that violate SLA
• Baseline: Executes requests in a FIFO fashion 

without sharing the microservices
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Utilization: Throughput

• ED: Equally Division
• EDF: Earliest Deadline First
• Batch size: 30, 50, DYN



Conclusions

• We explored a new approach to improve resource 
utilization while not violating SLAs

• Three distinct contributions
• Analysis of microservice execution scenarios
• Accurate estimation of completion time at each microservice
• Guarantee end-to-end SLAs by exploiting stage level SLAs

• Future work
• Enhancing the model to handle complex execution models

• e.g., Parallel execution of multiple microservices, conditional 
execution of microservices



Thank You!

GrandSLAm: Guaranteeing SLAs for Jobs in 
Microservices Execution Frameworks
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Jeongseob Ahn, Jason Mars, Lingjia Tang



Expected Questions

• PLEASE LIST UP HERE



Building Microservice DAGs 

Microservice cluster 
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